17(A+3)=4(A-10)+13

Simple and best practice solution for 17(A+3)=4(A-10)+13 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 17(A+3)=4(A-10)+13 equation:


Simplifying
17(A + 3) = 4(A + -10) + 13

Reorder the terms:
17(3 + A) = 4(A + -10) + 13
(3 * 17 + A * 17) = 4(A + -10) + 13
(51 + 17A) = 4(A + -10) + 13

Reorder the terms:
51 + 17A = 4(-10 + A) + 13
51 + 17A = (-10 * 4 + A * 4) + 13
51 + 17A = (-40 + 4A) + 13

Reorder the terms:
51 + 17A = -40 + 13 + 4A

Combine like terms: -40 + 13 = -27
51 + 17A = -27 + 4A

Solving
51 + 17A = -27 + 4A

Solving for variable 'A'.

Move all terms containing A to the left, all other terms to the right.

Add '-4A' to each side of the equation.
51 + 17A + -4A = -27 + 4A + -4A

Combine like terms: 17A + -4A = 13A
51 + 13A = -27 + 4A + -4A

Combine like terms: 4A + -4A = 0
51 + 13A = -27 + 0
51 + 13A = -27

Add '-51' to each side of the equation.
51 + -51 + 13A = -27 + -51

Combine like terms: 51 + -51 = 0
0 + 13A = -27 + -51
13A = -27 + -51

Combine like terms: -27 + -51 = -78
13A = -78

Divide each side by '13'.
A = -6

Simplifying
A = -6

See similar equations:

| dy/dx=4-y | | 284=-u+110 | | 2(x+1)-3(2x+2)=100 | | 3w-3x-y+5w+17x-5y= | | -2m^2-4m=2 | | 10x=4,80-0,30 | | -w+272=133 | | 9x-2y+14w+4y-6w+5x= | | 6x^2-9=-3x | | 3b^3-3b^3=0 | | (-x/3)-5=2x | | 9n^2+8n=-9 | | 34988474747478568938540248325=77658934789759347925238975798478293578923789578237857832789578923478957893478957347857834578934789578978395-x | | 42=6/7x | | 2x-4=-4x+2 | | 5w+9y+12x+2x-15y+3w= | | 2u/5=8 | | 0.2x=4.8 | | 9x-10x=-8 | | 7+8(x-9)=4-9(x-6) | | 3(r+1)=5(y-7) | | 2/3w=30 | | 2kx^2+5kx=12 | | 5(4+E)=3(3E-1)-9 | | 9x^2+6Y^2+144x-72Y+54=0 | | 7x^2=3x-5 | | 6z-5=61 | | 3n+2=2(6+n) | | 5y-16=2(4y-5) | | 3w+2x+11y+5w+12x-5y= | | y/4=12.8 | | 7s+17=157 |

Equations solver categories