17+2(4+2x*)=33

Simple and best practice solution for 17+2(4+2x*)=33 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 17+2(4+2x*)=33 equation:



17+2(4+2x*)=33
We move all terms to the left:
17+2(4+2x*)-(33)=0
We add all the numbers together, and all the variables
2(2x*+4)+17-33=0
We add all the numbers together, and all the variables
2(2x*+4)-16=0
We multiply parentheses
4x^2+8-16=0
We add all the numbers together, and all the variables
4x^2-8=0
a = 4; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·4·(-8)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2}}{2*4}=\frac{0-8\sqrt{2}}{8} =-\frac{8\sqrt{2}}{8} =-\sqrt{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2}}{2*4}=\frac{0+8\sqrt{2}}{8} =\frac{8\sqrt{2}}{8} =\sqrt{2} $

See similar equations:

| (Y-7)^2=2y^2-20y+54 | | -59=x/2 | | x²-2x-14=0 | | 21x-3=3x-6 | | 7x+14-2x=x+12-x-19 | | 1+15=-2(3x-8) | | 10-4a=-a-2 | | 8(3z-1)=22 | | 61(x-10)=90 | | 12+67+x=180 | | (2x-1)(4x+7)=0 | | 3/x=36/39 | | Y=⅞x | | 3(2k)-k=4(3k+7) | | 2x+2+108+2*90=360 | | 7=x-8/10 | | 5/2x+1=5/6x-4 | | (5r-3)-2=6r-7) | | 150x=3 | | 3t^2-40t+100=0 | | y4/9=2/3 | | 49-4u^2=0 | | 250-100x=3 | | (x−4)−7x=−8(x+1)−2 | | -3x=250 | | 1/7x+3=-3 | | Y=4x-3/5x+2 | | 3=250x | | 3x=250 | | 5r-7=-13+2r | | 250=3x | | a10=-1•1/3(10-1) |

Equations solver categories