If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 17 + -2f(5f + -62f) = 7(2f + 3) Combine like terms: 5f + -62f = -57f 17 + -2f(-57f) = 7(2f + 3) Remove parenthesis around (-57f) 17 + -2f * -57f = 7(2f + 3) Reorder the terms for easier multiplication: 17 + -2 * -57f * f = 7(2f + 3) Multiply -2 * -57 17 + 114f * f = 7(2f + 3) Multiply f * f 17 + 114f2 = 7(2f + 3) Reorder the terms: 17 + 114f2 = 7(3 + 2f) 17 + 114f2 = (3 * 7 + 2f * 7) 17 + 114f2 = (21 + 14f) Solving 17 + 114f2 = 21 + 14f Solving for variable 'f'. Reorder the terms: 17 + -21 + -14f + 114f2 = 21 + 14f + -21 + -14f Combine like terms: 17 + -21 = -4 -4 + -14f + 114f2 = 21 + 14f + -21 + -14f Reorder the terms: -4 + -14f + 114f2 = 21 + -21 + 14f + -14f Combine like terms: 21 + -21 = 0 -4 + -14f + 114f2 = 0 + 14f + -14f -4 + -14f + 114f2 = 14f + -14f Combine like terms: 14f + -14f = 0 -4 + -14f + 114f2 = 0 Factor out the Greatest Common Factor (GCF), '2'. 2(-2 + -7f + 57f2) = 0 Ignore the factor 2.Subproblem 1
Set the factor '(-2 + -7f + 57f2)' equal to zero and attempt to solve: Simplifying -2 + -7f + 57f2 = 0 Solving -2 + -7f + 57f2 = 0 Begin completing the square. Divide all terms by 57 the coefficient of the squared term: Divide each side by '57'. -0.0350877193 + -0.1228070175f + f2 = 0 Move the constant term to the right: Add '0.0350877193' to each side of the equation. -0.0350877193 + -0.1228070175f + 0.0350877193 + f2 = 0 + 0.0350877193 Reorder the terms: -0.0350877193 + 0.0350877193 + -0.1228070175f + f2 = 0 + 0.0350877193 Combine like terms: -0.0350877193 + 0.0350877193 = 0.0000000000 0.0000000000 + -0.1228070175f + f2 = 0 + 0.0350877193 -0.1228070175f + f2 = 0 + 0.0350877193 Combine like terms: 0 + 0.0350877193 = 0.0350877193 -0.1228070175f + f2 = 0.0350877193 The f term is -0.1228070175f. Take half its coefficient (-0.06140350875). Square it (0.003770390887) and add it to both sides. Add '0.003770390887' to each side of the equation. -0.1228070175f + 0.003770390887 + f2 = 0.0350877193 + 0.003770390887 Reorder the terms: 0.003770390887 + -0.1228070175f + f2 = 0.0350877193 + 0.003770390887 Combine like terms: 0.0350877193 + 0.003770390887 = 0.038858110187 0.003770390887 + -0.1228070175f + f2 = 0.038858110187 Factor a perfect square on the left side: (f + -0.06140350875)(f + -0.06140350875) = 0.038858110187 Calculate the square root of the right side: 0.197124606 Break this problem into two subproblems by setting (f + -0.06140350875) equal to 0.197124606 and -0.197124606.Subproblem 1
f + -0.06140350875 = 0.197124606 Simplifying f + -0.06140350875 = 0.197124606 Reorder the terms: -0.06140350875 + f = 0.197124606 Solving -0.06140350875 + f = 0.197124606 Solving for variable 'f'. Move all terms containing f to the left, all other terms to the right. Add '0.06140350875' to each side of the equation. -0.06140350875 + 0.06140350875 + f = 0.197124606 + 0.06140350875 Combine like terms: -0.06140350875 + 0.06140350875 = 0.00000000000 0.00000000000 + f = 0.197124606 + 0.06140350875 f = 0.197124606 + 0.06140350875 Combine like terms: 0.197124606 + 0.06140350875 = 0.25852811475 f = 0.25852811475 Simplifying f = 0.25852811475Subproblem 2
f + -0.06140350875 = -0.197124606 Simplifying f + -0.06140350875 = -0.197124606 Reorder the terms: -0.06140350875 + f = -0.197124606 Solving -0.06140350875 + f = -0.197124606 Solving for variable 'f'. Move all terms containing f to the left, all other terms to the right. Add '0.06140350875' to each side of the equation. -0.06140350875 + 0.06140350875 + f = -0.197124606 + 0.06140350875 Combine like terms: -0.06140350875 + 0.06140350875 = 0.00000000000 0.00000000000 + f = -0.197124606 + 0.06140350875 f = -0.197124606 + 0.06140350875 Combine like terms: -0.197124606 + 0.06140350875 = -0.13572109725 f = -0.13572109725 Simplifying f = -0.13572109725Solution
The solution to the problem is based on the solutions from the subproblems. f = {0.25852811475, -0.13572109725}Solution
f = {0.25852811475, -0.13572109725}
| 15-0.16667n=0.16667n-1 | | 6x+4=5[3x+8] | | 8(m+4)=8m+12 | | 2x^2+2y^2-8x+16y=0 | | 2x+7y=-2 | | 7m+8=78 | | 3[4d+1]-9d=6[2-d] | | 9+4(x-4)=3(x+7) | | X^3+y^3=3xy+1 | | 10u+7=8[2u-4]-9 | | 2.70+5.3= | | 9[2+w]-4w=3w-10 | | 8(2n-2)=-4(-4n+3) | | abs(3x^2+7x+3)=1 | | 2[4a-12]+3a=6a+1 | | -(r-7)+7=2(2r+8)-3r | | -3[5-9v]=25+7v | | n-12/29=22 | | -8n+4(-5-n)=20-7n | | -39+7n=-6(-8-6n) | | 8[k+3]=12k-4 | | 3y-11=20 | | 16b-2=-28 | | 8+8a=7(a+1)+6 | | -104=-8(r+7) | | 2[4x+7]=2x-4 | | -6*(x+10)=8+-7*(x+5) | | 2x^2-10-6=0 | | 3v+8v=8v | | -5a+1=3a-8a | | 4s-3-6s=17 | | 2(x-4)-3x=23 |