If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17.24+22.73y(0.003624-y)=100-70.42y(1+y)
We move all terms to the left:
17.24+22.73y(0.003624-y)-(100-70.42y(1+y))=0
We add all the numbers together, and all the variables
22.73y(-1y+0.003624)-(100-70.42y(y+1))+17.24=0
We multiply parentheses
-22y^2+0.079728y-(100-70.42y(y+1))+17.24=0
We calculate terms in parentheses: -(100-70.42y(y+1)), so:We get rid of parentheses
100-70.42y(y+1)
determiningTheFunctionDomain -70.42y(y+1)+100
We multiply parentheses
-70y^2-70y+100
Back to the equation:
-(-70y^2-70y+100)
-22y^2+70y^2+70y+0.079728y-100+17.24=0
We add all the numbers together, and all the variables
48y^2+70.079728y-82.76=0
a = 48; b = 70.079728; c = -82.76;
Δ = b2-4ac
Δ = 70.0797282-4·48·(-82.76)
Δ = 20801.088276554
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(70.079728)-\sqrt{20801.088276554}}{2*48}=\frac{-70.079728-\sqrt{20801.088276554}}{96} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(70.079728)+\sqrt{20801.088276554}}{2*48}=\frac{-70.079728+\sqrt{20801.088276554}}{96} $
| 105x+2x+x=180 | | 70.42+22.73y(0.003624-y)=100-17.24y(1+y) | | F(-2)=-3x-12 | | x^2=15+9+12 | | 67.11+24.69y(0.003319-y)=100-18.18y(1+y) | | 6+5n-6n=n+1+5n-9 | | 68.49+19.61y(0.005436-y)=100-13.70y(1+y) | | V+1=v-6-1+8 | | 13x-2(8+5x)=12x-11x | | -14+6b-6-4=8b+2b | | 2(-90+x+x2)=0 | | 7-5n=n+1 | | -4(3x+2)=2x+6-(8x-2) | | 63=9(2-a | | -4(3x+2)=2x | | 1/2m+3m=4m-8 | | 4y/1.2=1/6/0.1 | | 4x+5/7x=-3/2 | | 1/2(2y-4)=2/3(9y+3) | | 30/6=x/54 | | 2^4x=5√2^20 | | 2^4*x=100 | | 4x+24-5x-150=x | | 7x-49=x | | 4x+1/15=2x/15 | | 6/x-3=x+2 | | x/365=0 | | 2215000/(x/365)=0 | | 2215000/(x/365)=125 | | 2215000/(x/365)=64 | | 2215000/(x/365)=84 | | √2x+3=0 |