1725=35x(x+20)

Simple and best practice solution for 1725=35x(x+20) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1725=35x(x+20) equation:



1725=35x(x+20)
We move all terms to the left:
1725-(35x(x+20))=0
We calculate terms in parentheses: -(35x(x+20)), so:
35x(x+20)
We multiply parentheses
35x^2+700x
Back to the equation:
-(35x^2+700x)
We get rid of parentheses
-35x^2-700x+1725=0
a = -35; b = -700; c = +1725;
Δ = b2-4ac
Δ = -7002-4·(-35)·1725
Δ = 731500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{731500}=\sqrt{100*7315}=\sqrt{100}*\sqrt{7315}=10\sqrt{7315}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-700)-10\sqrt{7315}}{2*-35}=\frac{700-10\sqrt{7315}}{-70} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-700)+10\sqrt{7315}}{2*-35}=\frac{700+10\sqrt{7315}}{-70} $

See similar equations:

| 25000=2p^2=+400p | | x/12=6.5 | | 6=3(a+9) | | 40/10=2/x | | 0=16t^2+140 | | 1x+4=3x+3 | | 12=3(t+10) | | 12=3(t=10) | | 5x+11x=-85-7x | | 3x/10=180 | | -0.3t=1.5 | | 35(x+20)=1725 | | 11m−15=12m+13 | | 5x+11=-85–7x | | 2+48x=180 | | 40x-4=20 | | 8x-9=3x+8 | | 16k-5=13k | | 0.5(12x)–3x(6-2x)=-36 | | 3x-13=6x+5 | | (2x-5)(2x+8)=0 | | 7y+12+-2y+42=2(-3y+38) | | c/10=30/5 | | 7x-13=-3x+7 | | 7x-5=5x+15 | | 6y-4y=-17 | | 50x(2x-10)=1725 | | 49=-7(d-11) | | 9/p+8=6/10 | | x+.40=84 | | 4p-10+p+11=2(-6p+43) | | 7x-13=-3+7 |

Equations solver categories