1725=m+1/2m

Simple and best practice solution for 1725=m+1/2m equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1725=m+1/2m equation:



1725=m+1/2m
We move all terms to the left:
1725-(m+1/2m)=0
Domain of the equation: 2m)!=0
m!=0/1
m!=0
m∈R
We add all the numbers together, and all the variables
-(+m+1/2m)+1725=0
We get rid of parentheses
-m-1/2m+1725=0
We multiply all the terms by the denominator
-m*2m+1725*2m-1=0
Wy multiply elements
-2m^2+3450m-1=0
a = -2; b = 3450; c = -1;
Δ = b2-4ac
Δ = 34502-4·(-2)·(-1)
Δ = 11902492
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{11902492}=\sqrt{196*60727}=\sqrt{196}*\sqrt{60727}=14\sqrt{60727}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3450)-14\sqrt{60727}}{2*-2}=\frac{-3450-14\sqrt{60727}}{-4} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3450)+14\sqrt{60727}}{2*-2}=\frac{-3450+14\sqrt{60727}}{-4} $

See similar equations:

| 140+140+x+x=360 | | 1/6x-2/3=2/3x-2/3 | | 1/4(8x+12=) | | 4x-12+3x+4+90=180 | | x/12+9=14 | | 59−v=14 | | 3x+6+8x+7+90=180 | | 7−2g=1 | | v+2=3v | | -3=-6+3/k | | 9/63= n/91 | | -2x+4x-8=2 | | 8−2y=6 | | 3x+62+6x+100=180 | | |3x-12|=18 | | 11/v=17/5 | | 8*n=128 | | a+16=7a-62 | | Xx10=48 | | 6=c+5c | | (8x-54)=(6x-20) | | 9r+7=27-r | | X+2x+3×=100 | | 1.4p+9.8=-9.7 | | 4k+14=18k-56 | | 2x+4+5x=x+64 | | 20x+13=x+51 | | 6+nn=13 | | 3x-76+x=180 | | X/4+2x/5=1 | | 3x-76=x | | 3-x+2x-1=180 |

Equations solver categories