174=(3x+5)x

Simple and best practice solution for 174=(3x+5)x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 174=(3x+5)x equation:


Simplifying
174 = (3x + 5) * x

Reorder the terms:
174 = (5 + 3x) * x

Reorder the terms for easier multiplication:
174 = x(5 + 3x)
174 = (5 * x + 3x * x)
174 = (5x + 3x2)

Solving
174 = 5x + 3x2

Solving for variable 'x'.

Reorder the terms:
174 + -5x + -3x2 = 5x + -5x + 3x2 + -3x2

Combine like terms: 5x + -5x = 0
174 + -5x + -3x2 = 0 + 3x2 + -3x2
174 + -5x + -3x2 = 3x2 + -3x2

Combine like terms: 3x2 + -3x2 = 0
174 + -5x + -3x2 = 0

Begin completing the square.  Divide all terms by
-3 the coefficient of the squared term: 

Divide each side by '-3'.
-58 + 1.666666667x + x2 = 0

Move the constant term to the right:

Add '58' to each side of the equation.
-58 + 1.666666667x + 58 + x2 = 0 + 58

Reorder the terms:
-58 + 58 + 1.666666667x + x2 = 0 + 58

Combine like terms: -58 + 58 = 0
0 + 1.666666667x + x2 = 0 + 58
1.666666667x + x2 = 0 + 58

Combine like terms: 0 + 58 = 58
1.666666667x + x2 = 58

The x term is 1.666666667x.  Take half its coefficient (0.8333333335).
Square it (0.6944444447) and add it to both sides.

Add '0.6944444447' to each side of the equation.
1.666666667x + 0.6944444447 + x2 = 58 + 0.6944444447

Reorder the terms:
0.6944444447 + 1.666666667x + x2 = 58 + 0.6944444447

Combine like terms: 58 + 0.6944444447 = 58.6944444447
0.6944444447 + 1.666666667x + x2 = 58.6944444447

Factor a perfect square on the left side:
(x + 0.8333333335)(x + 0.8333333335) = 58.6944444447

Calculate the square root of the right side: 7.661229956

Break this problem into two subproblems by setting 
(x + 0.8333333335) equal to 7.661229956 and -7.661229956.

Subproblem 1

x + 0.8333333335 = 7.661229956 Simplifying x + 0.8333333335 = 7.661229956 Reorder the terms: 0.8333333335 + x = 7.661229956 Solving 0.8333333335 + x = 7.661229956 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + x = 7.661229956 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + x = 7.661229956 + -0.8333333335 x = 7.661229956 + -0.8333333335 Combine like terms: 7.661229956 + -0.8333333335 = 6.8278966225 x = 6.8278966225 Simplifying x = 6.8278966225

Subproblem 2

x + 0.8333333335 = -7.661229956 Simplifying x + 0.8333333335 = -7.661229956 Reorder the terms: 0.8333333335 + x = -7.661229956 Solving 0.8333333335 + x = -7.661229956 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + x = -7.661229956 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + x = -7.661229956 + -0.8333333335 x = -7.661229956 + -0.8333333335 Combine like terms: -7.661229956 + -0.8333333335 = -8.4945632895 x = -8.4945632895 Simplifying x = -8.4945632895

Solution

The solution to the problem is based on the solutions from the subproblems. x = {6.8278966225, -8.4945632895}

See similar equations:

| 24x-4y=28 | | (14/3x^6)(6/7x^5) | | -4(1-3x)=68 | | 300d^2-175d=0 | | (p+26)+(3p-37)+p=919 | | (X+20)/8=13 | | (3a^6)(-2a^3)= | | C-2/3=11 | | (-4xy^4z^6)6= | | -20w^2+16w=0 | | 3x+55+5x+83=154 | | -3(1+5p)=-63 | | X+20/8=13 | | m^11*m^2= | | -4x-5y=38 | | 69=2m | | 4x^2+9x-46=0 | | 5(-3k-6)=-75 | | 5/12=x/36 | | 3m+6n+9m+5n= | | 10b-10=-1b-18 | | 4(x-7)+12=2(x-6) | | -8m+-9(5-3m)=12 | | 67=-1-4(-1+4a) | | 1/2*y+9=25 | | (3x^8y^5)(9x^4y)= | | 6b-23=4-3b | | 1=2m | | 2w^2-5w=33 | | 9x+7=7x+47 | | (6/7x^7)(35/2x^6) | | 2x+34=10x-69 |

Equations solver categories