175x+175(x+160)=(x)(x+160)

Simple and best practice solution for 175x+175(x+160)=(x)(x+160) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 175x+175(x+160)=(x)(x+160) equation:



175x+175(x+160)=(x)(x+160)
We move all terms to the left:
175x+175(x+160)-((x)(x+160))=0
We multiply parentheses
175x+175x-(x(x+160))+28000=0
We calculate terms in parentheses: -(x(x+160)), so:
x(x+160)
We multiply parentheses
x^2+160x
Back to the equation:
-(x^2+160x)
We add all the numbers together, and all the variables
350x-(x^2+160x)+28000=0
We get rid of parentheses
-x^2+350x-160x+28000=0
We add all the numbers together, and all the variables
-1x^2+190x+28000=0
a = -1; b = 190; c = +28000;
Δ = b2-4ac
Δ = 1902-4·(-1)·28000
Δ = 148100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{148100}=\sqrt{100*1481}=\sqrt{100}*\sqrt{1481}=10\sqrt{1481}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(190)-10\sqrt{1481}}{2*-1}=\frac{-190-10\sqrt{1481}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(190)+10\sqrt{1481}}{2*-1}=\frac{-190+10\sqrt{1481}}{-2} $

See similar equations:

| 3/5x=7/15 | | 2r2=-8r-8 | | w2=-1 | | 5(x+9)=x-11 | | 2x^2+6=78 | | X3-x2-21x-45=0 | | 2x2+18x+36=0 | | 7v2+6=0 | | 5x+14-2x=9-(4x+2x) | | -c−10=9c | | 45x-18+24-40x-23=6x-3-7x | | p2=-8 | | 16u=63+9u | | 5(6x+7)=125 | | 9r2+1=0 | | (y-5)/4+(3y-2)/5=1/8-(y+3)/10+y/5 | | 3(5x+4)=(4x+9) | | 16x^2-128x+200=0 | | 7v+1=-v2 | | 3x+5x+6+7=100 | | w=-9w2+5 | | X/2-x/3+1/2=1 | | -5x13=-17 | | 9(5x2)+8(3-5x)-23=3(2x-1)-7x | | 8z2=-6 | | 144=4(4r+4) | | 6z2-9=0 | | x=84-8(-28) | | x-6=-2x-4 | | 9y2-9y-2=0 | | -8(n-3)=88 | | 204=6(6-7n) |

Equations solver categories