17=(2x-4)(3x-5)

Simple and best practice solution for 17=(2x-4)(3x-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 17=(2x-4)(3x-5) equation:



17=(2x-4)(3x-5)
We move all terms to the left:
17-((2x-4)(3x-5))=0
We multiply parentheses ..
-((+6x^2-10x-12x+20))+17=0
We calculate terms in parentheses: -((+6x^2-10x-12x+20)), so:
(+6x^2-10x-12x+20)
We get rid of parentheses
6x^2-10x-12x+20
We add all the numbers together, and all the variables
6x^2-22x+20
Back to the equation:
-(6x^2-22x+20)
We get rid of parentheses
-6x^2+22x-20+17=0
We add all the numbers together, and all the variables
-6x^2+22x-3=0
a = -6; b = 22; c = -3;
Δ = b2-4ac
Δ = 222-4·(-6)·(-3)
Δ = 412
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{412}=\sqrt{4*103}=\sqrt{4}*\sqrt{103}=2\sqrt{103}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-2\sqrt{103}}{2*-6}=\frac{-22-2\sqrt{103}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+2\sqrt{103}}{2*-6}=\frac{-22+2\sqrt{103}}{-12} $

See similar equations:

| 5n+8=60 | | 18x+17=179 | | 6x2+7x-98=0 | | 4(x+1=x+10 | | 0.39x=35 | | 5/7x+5=30 | | -24+12d=4(d-3)+22 | | -1z+6z=1z+83 | | x-22+1/3x+11+3x-69=180 | | -4(3t-5)+2t=3t-9 | | 2×+4=3(x-5) | | -12=2+2u | | F(x)=x^2+9x+18/x^2+2x-8 | | -7+w/3=-4 | | 12c=5+11c=-4 | | .5(10x+15)-1.5=2x+6+3x | | 12c=5+11c-4 | | -16x^2+48x+448=0 | | 1.5x-9+2.5x=3(5+x) | | (x+5)(x+6)=90 | | (x+5)(x-6)=90 | | 16/x=x4 | | -3=v-8 | | 3(5x+1)-4(2x-3)=3x+1 | | 0.35x=0.20x+10 | | t÷5-4=12 | | 4y+6/3=10 | | 3(x2-4)=5 | | 2y+4=7y-31 | | 24=12w-9w | | 4x-8=26x-9 | | 8x-(3x-5)-2x=2x(x+2)+5 |

Equations solver categories