If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17x(x+3)=136
We move all terms to the left:
17x(x+3)-(136)=0
We multiply parentheses
17x^2+51x-136=0
a = 17; b = 51; c = -136;
Δ = b2-4ac
Δ = 512-4·17·(-136)
Δ = 11849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11849}=\sqrt{289*41}=\sqrt{289}*\sqrt{41}=17\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(51)-17\sqrt{41}}{2*17}=\frac{-51-17\sqrt{41}}{34} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(51)+17\sqrt{41}}{2*17}=\frac{-51+17\sqrt{41}}{34} $
| 0=-3(12-20)+3n*4^3 | | -2+8a=-66 | | 1/7x+5/14=5/7 | | 0=3x*4 | | 5n-10=-90 | | 0=3x4 | | -3(12-20)+3n*4^3=0 | | 9=2x+11 | | -3(12-20)+3n4^3=0 | | 2=8+2k | | -34=-10-6n | | 4(u+4)=-6u+36 | | 3x+1+2x-4=90 | | -5(x)=3x^2-7 | | X-5=2y-1 | | -9=r/9-10 | | 3/4=7/8x | | k/9+8=10 | | 253/44=x/40 | | 6v-15=6v-15 | | 5b+1=3b-7 | | 13n-16+7n+12=6n | | -13=z+5 | | -4(a+3)=-3+5a | | 4=6+v/7 | | 25x+550×96-3x=54600 | | 18+5k=2(3k+5) | | -9=5+k | | 23x-16=64-17x | | 4(2x)+6=72 | | 6r=7r=1.2 | | 3/4a=83 |