If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17x^2+36x=0
a = 17; b = 36; c = 0;
Δ = b2-4ac
Δ = 362-4·17·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-36}{2*17}=\frac{-72}{34} =-2+2/17 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+36}{2*17}=\frac{0}{34} =0 $
| a=3/7=5/11 | | a-3.5+a+2.8+17.5+2a-18.2=360 | | 2y”+5y’+2y=0 | | 1/3x+4(2x-3)=1/5(10x-15) | | -3x-2=37 | | 47=9x+20 | | (3x)+(x+28)=180 | | 59=2x+27 | | (3x+(x+28)=180 | | (9+9)n=9 | | 7x+45=59 | | 7=9x-6 | | 59=5x+4 | | z/10+3=7 | | -.5t²+1t+2.75=0 | | -13-3x=5+3x | | t²+t+2.74=0 | | a/5+7=9 | | 262-3h=67 | | 0.4(8−0.2w)=−40.48-0.2w=-4w = | | 3/10=3/5p | | 0.8(5+5x)+4=20 | | 4n+2=4n+2 | | 4/9=8k | | z/7+9=4 | | x·(x+2)=15 | | 5=5/6f | | 15=3y/4 | | 5x+6x+7=360 | | -48=6(v+3) | | 5x+6x+7=180 | | F(x)=-x2+6x+27 |