If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17x^2-36x+6.5=0
a = 17; b = -36; c = +6.5;
Δ = b2-4ac
Δ = -362-4·17·6.5
Δ = 854
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-\sqrt{854}}{2*17}=\frac{36-\sqrt{854}}{34} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+\sqrt{854}}{2*17}=\frac{36+\sqrt{854}}{34} $
| -3.7j+1.07=-3.8j | | -5.7+2.68d=-14.02 | | 1.4x=8 | | 2-1.4a=-2.9 | | 5(-9x)=15 | | 3x^2-128x+1440=0 | | y=-1÷4×+2 | | 63z-72=54z-36 | | x+(x+1)=-157 | | 9z=-108 | | 63=17p-29 | | 25/5=x+1 | | 4(5x2+2)=48 | | -2=9-y | | 640÷(x·9+8)=8 | | 2n+7=-6 | | 8-9t=21t-18 | | 0.04(y-9)+0.20y=0.08y-1 | | 4(g+8)=-2(7-2g) | | 6.75=99+2d | | 5(-x-2)=-(x+4)+2 | | 65(x)=3 | | x^2=0.0004 | | 16x^2+16-21=0 | | 6r−5r=11 | | 2x+25=-x+1 | | 10.2=0.64y | | 2(x-1)-3(x-7)=1 | | x+3x−2x−x=71/7 | | 2(0.50t+3)=1 | | 0=-0.03(x-10)^2+8 | | 5/4=v+5/6 |