18(18+24)=(x+7)(x+7)

Simple and best practice solution for 18(18+24)=(x+7)(x+7) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 18(18+24)=(x+7)(x+7) equation:



18(18+24)=(x+7)(x+7)
We move all terms to the left:
18(18+24)-((x+7)(x+7))=0
We add all the numbers together, and all the variables
-((x+7)(x+7))+1842=0
We multiply parentheses ..
-((+x^2+7x+7x+49))+1842=0
We calculate terms in parentheses: -((+x^2+7x+7x+49)), so:
(+x^2+7x+7x+49)
We get rid of parentheses
x^2+7x+7x+49
We add all the numbers together, and all the variables
x^2+14x+49
Back to the equation:
-(x^2+14x+49)
We get rid of parentheses
-x^2-14x-49+1842=0
We add all the numbers together, and all the variables
-1x^2-14x+1793=0
a = -1; b = -14; c = +1793;
Δ = b2-4ac
Δ = -142-4·(-1)·1793
Δ = 7368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7368}=\sqrt{4*1842}=\sqrt{4}*\sqrt{1842}=2\sqrt{1842}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{1842}}{2*-1}=\frac{14-2\sqrt{1842}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{1842}}{2*-1}=\frac{14+2\sqrt{1842}}{-2} $

See similar equations:

| 5x+50=20x= | | 7r=48=8 | | -3d-9=-2 | | 2(5x+3)=-2(4x-6) | | 4+4s=114 | | 4(c+11)=60 | | 18*32=8x^ | | 4s+4=114 | | 3t+163.2t=7 | | 5(3x+4)=11+3(4x+9) | | 7+12h=19 | | 13x-7x=5 | | 18(18+14)=8x^ | | 3x-33x=11 | | 7x+12-3=4x+18 | | X-327=154-12x | | 7^-8x=4^x-4 | | x=6=5 | | 12-5.2x=-2.7x-8.3+x | | z/1.6=0.3 | | 20x+30x+10x=120 | | u/9+59=64 | | x+66=13@ | | (5x+7)=(x+2) | | 3.2x+5.5=24.7 | | x/0.1-x=1.45 | | 2/50-3/10y=1/5 | | 5=-9z | | d/1.8=2.2 | | 3n+30=24 | | 13-6.4x/2=1.8x+10.5 | | g+29/5=5 |

Equations solver categories