18(20x+4)=3x(9x+6)

Simple and best practice solution for 18(20x+4)=3x(9x+6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 18(20x+4)=3x(9x+6) equation:



18(20x+4)=3x(9x+6)
We move all terms to the left:
18(20x+4)-(3x(9x+6))=0
We multiply parentheses
360x-(3x(9x+6))+72=0
We calculate terms in parentheses: -(3x(9x+6)), so:
3x(9x+6)
We multiply parentheses
27x^2+18x
Back to the equation:
-(27x^2+18x)
We get rid of parentheses
-27x^2+360x-18x+72=0
We add all the numbers together, and all the variables
-27x^2+342x+72=0
a = -27; b = 342; c = +72;
Δ = b2-4ac
Δ = 3422-4·(-27)·72
Δ = 124740
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{124740}=\sqrt{324*385}=\sqrt{324}*\sqrt{385}=18\sqrt{385}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(342)-18\sqrt{385}}{2*-27}=\frac{-342-18\sqrt{385}}{-54} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(342)+18\sqrt{385}}{2*-27}=\frac{-342+18\sqrt{385}}{-54} $

See similar equations:

| 2x-3=-29 | | 1.44=2^x | | 48=y-17 | | -4k-2=7 | | -5x-9=-117+7x | | 89+5x+-7=14x+1 | | 26=14+2m | | 24k²-144=4k²-96k | | X-9=-5x+9 | | -8d+5d+7d=20 | | 15=7+2p | | (4+q)(-11)=121 | | 8j+2=-3j+8=-5j | | 2x+13+4x+29=90 | | 2(x-2.50)=8.20 | | 7x+3=-7x+87 | | 2.9=3.1-t | | b-2.3=0.46 | | -3y-18=9 | | x+96=258 | | 90+5x+3x+8-30=180 | | x+98=258 | | x-37=-12 | | 2.5q=5 | | 5-7x=3x+55 | | 25*2.4=r | | 36=9(7-x) | | 8x+8-30=180 | | 1.5y=5 | | 2x+1x=-4+4 | | X×-3+7=5.5+3x | | 63=48x |

Equations solver categories