18+16x-12=-4x(2-x)+9x

Simple and best practice solution for 18+16x-12=-4x(2-x)+9x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 18+16x-12=-4x(2-x)+9x equation:



18+16x-12=-4x(2-x)+9x
We move all terms to the left:
18+16x-12-(-4x(2-x)+9x)=0
We add all the numbers together, and all the variables
16x-(-4x(-1x+2)+9x)+18-12=0
We add all the numbers together, and all the variables
16x-(-4x(-1x+2)+9x)+6=0
We calculate terms in parentheses: -(-4x(-1x+2)+9x), so:
-4x(-1x+2)+9x
We add all the numbers together, and all the variables
9x-4x(-1x+2)
We multiply parentheses
4x^2+9x-8x
We add all the numbers together, and all the variables
4x^2+x
Back to the equation:
-(4x^2+x)
We get rid of parentheses
-4x^2+16x-x+6=0
We add all the numbers together, and all the variables
-4x^2+15x+6=0
a = -4; b = 15; c = +6;
Δ = b2-4ac
Δ = 152-4·(-4)·6
Δ = 321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{321}}{2*-4}=\frac{-15-\sqrt{321}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{321}}{2*-4}=\frac{-15+\sqrt{321}}{-8} $

See similar equations:

| 25x=100(34;6) | | 20x=48/11 | | 18+6x-12=-4x(2-x)+9x | | 1/3t=-8 | | 270/15=x/40 | | X÷3+x÷4=42 | | 1/3x=6/5 | | z/10+1=3 | | 2x+20=5x+16 | | X+0.12x=34,500 | | 4x-14x+10x=-12+5-6-7 | | 3h²-147=169 | | 3h²-147=16ô | | 4-6x=11x+3 | | a/3+3=7 | | -5b-7b=12b | | 4-6x=x-10 | | 10(3x+1)=2(9x+11) | | 11×15=2x² | | 2/3*x-2=4 | | 5x+15=2x+60 | | 17+6x=103 | | 9x+6=5x+10+606 | | 64/12=x/10 | | 4^x+3-4^x=1008 | | 9x+6=5x+19+606 | | 8x+√100=3x+20+110 | | 8s+√100=3s+20+110 | | I10x-12=-7 | | 3x-1+18/3x=29 | | 4^2x+2=16^2x-5 | | 2x+2x=16+12+2x |

Equations solver categories