18-x=1/3(15x)+6

Simple and best practice solution for 18-x=1/3(15x)+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 18-x=1/3(15x)+6 equation:



18-x=1/3(15x)+6
We move all terms to the left:
18-x-(1/3(15x)+6)=0
Domain of the equation: 315x+6)!=0
x∈R
We add all the numbers together, and all the variables
-1x-(1/315x+6)+18=0
We get rid of parentheses
-1x-1/315x-6+18=0
We multiply all the terms by the denominator
-1x*315x-6*315x+18*315x-1=0
Wy multiply elements
-315x^2-1890x+5670x-1=0
We add all the numbers together, and all the variables
-315x^2+3780x-1=0
a = -315; b = 3780; c = -1;
Δ = b2-4ac
Δ = 37802-4·(-315)·(-1)
Δ = 14287140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{14287140}=\sqrt{36*396865}=\sqrt{36}*\sqrt{396865}=6\sqrt{396865}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3780)-6\sqrt{396865}}{2*-315}=\frac{-3780-6\sqrt{396865}}{-630} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3780)+6\sqrt{396865}}{2*-315}=\frac{-3780+6\sqrt{396865}}{-630} $

See similar equations:

| x-25+29=180 | | 5x-2×=7 | | 6e-5=-29 | | x-17x=35 | | 10x+2x^2=120 | | 40=4q | | 15-w/4=-52 | | n^2-4n-30=2 | | 10x-20=30+50 | | 11=x/3-16 | | –2m=–3m−2 | | 44x-24=216 | | 3x+13+2x+1=180 | | 10t+6=9t | | 13x+169=52 | | -7q=-42 | | x+1+x+2x+3=48 | | 8(2x-6)=-122 | | 140d+895=1875 | | 3x^2+2x+2=10 | | 34n-18=n4-4 | | 4x+45+135+45+135=720 | | 4d=–10+2d | | 2u-u+2u+5u=16 | | −7x-3x+2=−8x-8 | | 23w+11=18w-4 | | -20=-2s | | –10+4f=–6f | | f/6=2.50 | | 11a-12=8a-6 | | 9a=82 | | 5u−10=10u |

Equations solver categories