If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18/4-2/5k=5-1/3k
We move all terms to the left:
18/4-2/5k-(5-1/3k)=0
Domain of the equation: 5k!=0
k!=0/5
k!=0
k∈R
Domain of the equation: 3k)!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
-2/5k-(-1/3k+5)+18/4=0
We get rid of parentheses
-2/5k+1/3k-5+18/4=0
We calculate fractions
810k^2/240k^2+(-96k)/240k^2+80k/240k^2-5=0
We multiply all the terms by the denominator
810k^2+(-96k)+80k-5*240k^2=0
We add all the numbers together, and all the variables
810k^2+80k+(-96k)-5*240k^2=0
Wy multiply elements
810k^2-1200k^2+80k+(-96k)=0
We get rid of parentheses
810k^2-1200k^2+80k-96k=0
We add all the numbers together, and all the variables
-390k^2-16k=0
a = -390; b = -16; c = 0;
Δ = b2-4ac
Δ = -162-4·(-390)·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-16}{2*-390}=\frac{0}{-780} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+16}{2*-390}=\frac{32}{-780} =-8/195 $
| x–14=-2x–6 | | 3x+1+x=90 | | 6(-8x-4)+2x=4 | | -3(-3x+5)=9 | | 3+4h=10 | | 10x^2-48x+36=0 | | 625^-x/4=3125 | | 3(5x-2)+4x=9x+2-2x | | 300-4x=80 | | 300-4x=810 | | 11b=-187 | | -8x+14+10+19=4 | | k/8+41=44 | | -(7x-5)=2x+9 | | -r+11=16 | | 40=5+7j | | 8.5=3h-3.5 | | 28-y^2=7y | | 39x=-3 | | 3x-2x+10=0 | | 4(x−3)=16 | | 8u-7u=4 | | 2.2(4p+2)=3.2 | | v+15/9=5 | | v/2+9=34 | | b+25=b−25 | | (4x+16)/4x2=40x2 | | 4=s/3-3 | | 18y−-4y−-11=-11 | | 16m+4m=20 | | -9(g-91)=-72 | | 2x+3-x3=x2-1 |