180(n-2)=360/n

Simple and best practice solution for 180(n-2)=360/n equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180(n-2)=360/n equation:


D( n )

n = 0

n = 0

n = 0

n in (-oo:0) U (0:+oo)

180*(n-2) = 360/n // - 360/n

180*(n-2)-(360/n) = 0

180*(n-2)-360*n^-1 = 0

180*(n-2)-360/n = 0

(180*n*(n-2))/n-360/n = 0

180*n*(n-2)-360 = 0

180*n^2-360*n-360 = 0

180*n^2-360*n-360 = 0

180*(n^2-2*n-2) = 0

n^2-2*n-2 = 0

DELTA = (-2)^2-(-2*1*4)

DELTA = 12

DELTA > 0

n = (12^(1/2)+2)/(1*2) or n = (2-12^(1/2))/(1*2)

n = (2*3^(1/2)+2)/2 or n = (2-2*3^(1/2))/2

180*(n-((2-2*3^(1/2))/2))*(n-((2*3^(1/2)+2)/2)) = 0

(180*(n-((2-2*3^(1/2))/2))*(n-((2*3^(1/2)+2)/2)))/n = 0

(180*(n-((2-2*3^(1/2))/2))*(n-((2*3^(1/2)+2)/2)))/n = 0 // * n

180*(n-((2-2*3^(1/2))/2))*(n-((2*3^(1/2)+2)/2)) = 0

( n-((2*3^(1/2)+2)/2) )

n-((2*3^(1/2)+2)/2) = 0 // + (2*3^(1/2)+2)/2

n = (2*3^(1/2)+2)/2

( n-((2-2*3^(1/2))/2) )

n-((2-2*3^(1/2))/2) = 0 // + (2-2*3^(1/2))/2

n = (2-2*3^(1/2))/2

n in { (2*3^(1/2)+2)/2, (2-2*3^(1/2))/2 }

See similar equations:

| 12x-8=60 | | -38-10x=51-31x | | 4+2(3x-7)+5x= | | 5/u-7=8 | | 180=4x+40+2x-10 | | 2-3(2x+6)=2/3 | | 6-m=2.3/10 | | 6(x-6)(2x+1)=0 | | 23a=37 | | 4x+40=2x-10 | | 1/4d=69 | | 6x(x+1)=0 | | 2=4-3x | | (7x+9)*(-10)+5(11-6x)=-100x+25 | | 2(x-3)=-4x+24 | | 4n=62 | | 2x+6+42=-4x | | (7x+9)*(-10)+5(11-6x)=-76x+25 | | 2x+6+42=4x | | 6x-24=-2x+16 | | 1/2(4x-6)=3x | | 14x+6=7x+41 | | 4x-4=2x+12 | | (7x+9)*(-10)+5(11-6x)=-100x-35 | | 4x+28=-3x+21 | | X(6x+4)=42 | | -2-+6= | | 10z^2-19z-48=0 | | 2885612/14 | | 5x+30=3x+18 | | 35y^2*3y/7 | | 2z^3+16z/z^5 |

Equations solver categories