180(x-2)+360/x=3780

Simple and best practice solution for 180(x-2)+360/x=3780 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180(x-2)+360/x=3780 equation:



180(x-2)+360/x=3780
We move all terms to the left:
180(x-2)+360/x-(3780)=0
Domain of the equation: x!=0
x∈R
We multiply parentheses
180x+360/x-360-3780=0
We multiply all the terms by the denominator
180x*x-360*x-3780*x+360=0
We add all the numbers together, and all the variables
-4140x+180x*x+360=0
Wy multiply elements
180x^2-4140x+360=0
a = 180; b = -4140; c = +360;
Δ = b2-4ac
Δ = -41402-4·180·360
Δ = 16880400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{16880400}=\sqrt{32400*521}=\sqrt{32400}*\sqrt{521}=180\sqrt{521}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4140)-180\sqrt{521}}{2*180}=\frac{4140-180\sqrt{521}}{360} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4140)+180\sqrt{521}}{2*180}=\frac{4140+180\sqrt{521}}{360} $

See similar equations:

| 36=2/3r | | −2(−4x+3)=58 | | 4.6+10m=6.12 | | -6.2y+0.5y+0.68=-8.5y-8.56 | | 3(r-2)=18-3r | | 8y-56=8y+56 | | 2x(x+3)x=-5 | | 1/3+x=5 | | 10x-8+6x=5(5x-3)+4 | | 7(-3+2m)=-11+4M | | 1.8w=5.2 | | -2-3(1-4x)=-53 | | 10-3(6x-4)=-2 | | 2x-3(3-x)=-9+5x | | q-2.86=3.14 | | x/33=27/99 | | 8x+12=-46+18 | | 22y=32 | | -26+2x=5(1+5x)+8x | | 960=75m+8.5 | | 2x-8.62=-2.3x= | | 32=1/3u+70 | | 3/5(1-1/6(18d-12)=38 | | 3(n+12)-n=-41-5n | | -2n+3=10-9n | | -3/8m=21 | | 2(x-1)+3x=3(x+4) | | -26=2x=5(1=5x)=8x | | `y-7=14` | | 4(x-4)-14=-2(-1+6x) | | 15+4a=9-5a | | 3-z=-5-2z |

Equations solver categories