180-1/2x=160+1/3x

Simple and best practice solution for 180-1/2x=160+1/3x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180-1/2x=160+1/3x equation:



180-1/2x=160+1/3x
We move all terms to the left:
180-1/2x-(160+1/3x)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-1/2x-(1/3x+160)+180=0
We get rid of parentheses
-1/2x-1/3x-160+180=0
We calculate fractions
(-3x)/6x^2+(-2x)/6x^2-160+180=0
We add all the numbers together, and all the variables
(-3x)/6x^2+(-2x)/6x^2+20=0
We multiply all the terms by the denominator
(-3x)+(-2x)+20*6x^2=0
Wy multiply elements
120x^2+(-3x)+(-2x)=0
We get rid of parentheses
120x^2-3x-2x=0
We add all the numbers together, and all the variables
120x^2-5x=0
a = 120; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·120·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*120}=\frac{0}{240} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*120}=\frac{10}{240} =1/24 $

See similar equations:

| 36-x.3÷2=36 | | X^2+x^2+2x+7x-9=36 | | u+8=3u | | 4x+44=7x+15 | | x-2/9=28 | | 3a^2-22a=-17 | | 3x^2+18x-13=0 | | 2x2-2=7 | | −y+35=−8y | | 7x(33-7)=5 | | 19+x÷2=4 | | 4^(x+7)=6 | | 24-n=-3n | | -4x-3(-6x+11)=79 | | 9x-17=44 | | 90*2+0.50x=500 | | 16-2.4n=-8 | | 2h-5=25 | | x^2+15=19 | | 2(2-x)=4(-2+x | | 1/5x+(2)=11 | | 5x^2-70x-148=0 | | 30-9x=20-6x-2 | | 15/20=x/3 | | a-5=26 | | 3/20=x/15 | | 4x+6=30/11 | | t+15=22 | | T+t5=22 | | -4(3-x)=-44 | | -x/9=2 | | 4x-2x+7x=27 |

Equations solver categories