180-x=1/3(x)

Simple and best practice solution for 180-x=1/3(x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180-x=1/3(x) equation:



180-x=1/3(x)
We move all terms to the left:
180-x-(1/3(x))=0
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-x-(+1/3x)+180=0
We add all the numbers together, and all the variables
-1x-(+1/3x)+180=0
We get rid of parentheses
-1x-1/3x+180=0
We multiply all the terms by the denominator
-1x*3x+180*3x-1=0
Wy multiply elements
-3x^2+540x-1=0
a = -3; b = 540; c = -1;
Δ = b2-4ac
Δ = 5402-4·(-3)·(-1)
Δ = 291588
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{291588}=\sqrt{8836*33}=\sqrt{8836}*\sqrt{33}=94\sqrt{33}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(540)-94\sqrt{33}}{2*-3}=\frac{-540-94\sqrt{33}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(540)+94\sqrt{33}}{2*-3}=\frac{-540+94\sqrt{33}}{-6} $

See similar equations:

| 10/3=3/q | | 8d-3(5d+6)=d-(3d+8)-5 | | 2n=9n+51 | | 2p+(2p-2)+(p-3)=180 | | 2+5x+7x=134 | | 12x-8+11x+1=180 | | 2p+(2p+2)+(p-3)=180 | | 7m+14=8m+112 | | 75=3x+7x=5 | | -6n-11=5-5(8+6n | | 5w+30+(w+6)=180 | | 3(n+25=) | | 3x+3+6x=66 | | 9a+11=5a-17 | | 7n=2n+51 | | 38203932x=83789223435 | | 2+2x+5x=23 | | 8+4x+4x=88 | | 22=4x+3x+1 | | 10r+20=-30+10r | | 38+103+(x+17)=180 | | 58=6x+3x+4 | | 33+41z+65=180 | | 2x+6+5x=69 | | 7/9y=35/54 | | -4d+16=3(2d-1)-1 | | 4(x+2)=9.7 | | 3.7x+81=13.69+9x | | (-x-30)+9=5x-21 | | (c-13)+(c+10)+31=180 | | 3.7x+81=1369+9x | | x+68+x+78+40=180 |

Equations solver categories