180-x=1/4x

Simple and best practice solution for 180-x=1/4x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180-x=1/4x equation:



180-x=1/4x
We move all terms to the left:
180-x-(1/4x)=0
Domain of the equation: 4x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-x-(+1/4x)+180=0
We add all the numbers together, and all the variables
-1x-(+1/4x)+180=0
We get rid of parentheses
-1x-1/4x+180=0
We multiply all the terms by the denominator
-1x*4x+180*4x-1=0
Wy multiply elements
-4x^2+720x-1=0
a = -4; b = 720; c = -1;
Δ = b2-4ac
Δ = 7202-4·(-4)·(-1)
Δ = 518384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{518384}=\sqrt{16*32399}=\sqrt{16}*\sqrt{32399}=4\sqrt{32399}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(720)-4\sqrt{32399}}{2*-4}=\frac{-720-4\sqrt{32399}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(720)+4\sqrt{32399}}{2*-4}=\frac{-720+4\sqrt{32399}}{-8} $

See similar equations:

| 3(s-8)-9=-3 | | 3x+27=8x-33 | | 2n+16+5n+10=180 | | 6x-11+10x-50=98 | | 6r+9=4r+31 | | 3(b+5)-8b=-20 | | 10w+10=10w-2 | | 2÷3+3m÷5=31÷15 | | 18(-×-2)-4(-9+3x)=-14 | | 15w+19w-5+4=-3w+4-5 | | 35=4(b+16) | | 1/3d+8=2 | | 3800-750-w=500 | | F(x+6)=6x+3 | | 5u+2u=7u | | 6c+15=c | | -3+3=-3g-4 | | (6x-5)^2=28 | | 8d=8d-3 | | 10z-6=-6+10z | | (-2y—2)=4y-(y+2) | | 4+12.2=-5v | | 6+3f=-8f-5 | | 8-7•x=-29 | | 5x-2+4=2x+12 | | -2(x-8)^3+9=-241 | | -4f+2.5=2.3 | | 2.60t+t(2.60)=2.73 | | 1568=28h | | 8x+2=56 | | 10+b=-b | | 4(2x+(-3))=5.5x |

Equations solver categories