If it's not what You are looking for type in the equation solver your own equation and let us solve it.
180=(10+x)(12+x)
We move all terms to the left:
180-((10+x)(12+x))=0
We add all the numbers together, and all the variables
-((x+10)(x+12))+180=0
We multiply parentheses ..
-((+x^2+12x+10x+120))+180=0
We calculate terms in parentheses: -((+x^2+12x+10x+120)), so:We get rid of parentheses
(+x^2+12x+10x+120)
We get rid of parentheses
x^2+12x+10x+120
We add all the numbers together, and all the variables
x^2+22x+120
Back to the equation:
-(x^2+22x+120)
-x^2-22x-120+180=0
We add all the numbers together, and all the variables
-1x^2-22x+60=0
a = -1; b = -22; c = +60;
Δ = b2-4ac
Δ = -222-4·(-1)·60
Δ = 724
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{724}=\sqrt{4*181}=\sqrt{4}*\sqrt{181}=2\sqrt{181}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{181}}{2*-1}=\frac{22-2\sqrt{181}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{181}}{2*-1}=\frac{22+2\sqrt{181}}{-2} $
| 13x-6=21x+8=143 | | 6x-1.4=10.6 | | 4(2x+3)=2(x+18) | | 13x+10=3/5x | | 37=-7t-5 | | O.2x-14=1 | | 15,000+150x=22,000-200x | | 6(c-12)=-6 | | 4(3x+2=14 | | 180=x+15+43+3x | | -8-5p=-7p+10 | | 12/2=n/5 | | -4(y+3)=-8y-24 | | 4x+2+3x-5x+6=0 | | 2.3n+8=20 | | x^2-3=(2+x)(3-x) | | 4x+133=11x-14 | | 4x+27=-7(x+4) | | 2^(3x+9)=25 | | 2.3(n+8)=20 | | 64=x/250 | | 8t+4t-8t=16 | | z/7+3=-82 | | 2x-1=37-9x | | 3x-7+x+8=90 | | 2x-1=38-9x | | (120)(1.5)=(12x)(10x) | | 5+2x9=90 | | 4=g/4+1 | | 4-6w=3(1/2+w/2 | | k/3+8=21 | | 5(2x-10=25 |