If it's not what You are looking for type in the equation solver your own equation and let us solve it.
180=(14x+70)(20x+8)
We move all terms to the left:
180-((14x+70)(20x+8))=0
We multiply parentheses ..
-((+280x^2+112x+1400x+560))+180=0
We calculate terms in parentheses: -((+280x^2+112x+1400x+560)), so:We get rid of parentheses
(+280x^2+112x+1400x+560)
We get rid of parentheses
280x^2+112x+1400x+560
We add all the numbers together, and all the variables
280x^2+1512x+560
Back to the equation:
-(280x^2+1512x+560)
-280x^2-1512x-560+180=0
We add all the numbers together, and all the variables
-280x^2-1512x-380=0
a = -280; b = -1512; c = -380;
Δ = b2-4ac
Δ = -15122-4·(-280)·(-380)
Δ = 1860544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1860544}=\sqrt{64*29071}=\sqrt{64}*\sqrt{29071}=8\sqrt{29071}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1512)-8\sqrt{29071}}{2*-280}=\frac{1512-8\sqrt{29071}}{-560} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1512)+8\sqrt{29071}}{2*-280}=\frac{1512+8\sqrt{29071}}{-560} $
| -5+4x=-2x | | 8=b+12 | | 2(5x-6)=3(3x-7)+2x | | 4x-20+x+10=180 | | 10x-15=13x+3 | | 30+v=2.50v | | 10x+12=-6x | | x-5/7x=20 | | 100n=120 | | 3(x-3)=4(x-1) | | -16y-15-18=-16y-10 | | 4x-10=78-7x | | 0.90n=n+17 | | 13+2=-3(7x-5) | | 8x-17+5x-37=17x-14 | | 10q-7=10q | | 3(2x+6)=-26+32 | | 4x-6=10x-19 | | 16-14c=-16-16c | | 6-3/4a=1/2+1 | | 6x-3x/2=45 | | 5/2x-3/2=7-2 | | 18+16j=18j | | (1/4)x+3=(-1/4)x | | 2x=2(0+4x) | | 8(m-2)=4(m-1) | | 3k=-k+4k | | 2(5x+5)=-40+10 | | 6k+6=-18 | | -2-10h=4-9h | | 1/2x-12=2 | | 8+x=3(x+1) |