180=(30+x)x

Simple and best practice solution for 180=(30+x)x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180=(30+x)x equation:



180=(30+x)x
We move all terms to the left:
180-((30+x)x)=0
We add all the numbers together, and all the variables
-((x+30)x)+180=0
We calculate terms in parentheses: -((x+30)x), so:
(x+30)x
We multiply parentheses
x^2+30x
Back to the equation:
-(x^2+30x)
We get rid of parentheses
-x^2-30x+180=0
We add all the numbers together, and all the variables
-1x^2-30x+180=0
a = -1; b = -30; c = +180;
Δ = b2-4ac
Δ = -302-4·(-1)·180
Δ = 1620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1620}=\sqrt{324*5}=\sqrt{324}*\sqrt{5}=18\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-18\sqrt{5}}{2*-1}=\frac{30-18\sqrt{5}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+18\sqrt{5}}{2*-1}=\frac{30+18\sqrt{5}}{-2} $

See similar equations:

| 5y-29=-7(y-1) | | 4x+1=2x-6 | | -4n-8=(4(-3n+2) | | 2.5t^2-2t+3=0 | | 8-x/7=-4 | | n-1/3=1/4 | | -3(w-5)=6w-48 | | y-4.1=12.3 | | -2x-5=9(x-3) | | 38=-7w+2(w-6) | | 2x+28=49 | | 36=3(u+6)-6u | | -4(u+6)=-7u+6 | | 2+2c/5=6-c/4 | | -5x-25=5(x+9) | | 13-(2(2x+1))=1 | | 3c+5=37 | | -8y+6(y-5)=-28 | | -5x+6=12-5x | | x52=40,320 | | -9=3(x+3)-6x | | 4+5+x=3x | | -(3x+-12)=9x+-4 | | -0.20(30)+0.70x=0.40(30+x) | | F(x)=-26/x+7 | | X+2=4x+26 | | 12x+4x=320 | | 39=-8w+5(w+3) | | -24=3(v-3)-6v | | 6x*x+9x=+6 | | 8x12=5x+57 | | 7x+49=-7(x+9) |

Equations solver categories