180=(4+5x)(x+2)

Simple and best practice solution for 180=(4+5x)(x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180=(4+5x)(x+2) equation:



180=(4+5x)(x+2)
We move all terms to the left:
180-((4+5x)(x+2))=0
We add all the numbers together, and all the variables
-((5x+4)(x+2))+180=0
We multiply parentheses ..
-((+5x^2+10x+4x+8))+180=0
We calculate terms in parentheses: -((+5x^2+10x+4x+8)), so:
(+5x^2+10x+4x+8)
We get rid of parentheses
5x^2+10x+4x+8
We add all the numbers together, and all the variables
5x^2+14x+8
Back to the equation:
-(5x^2+14x+8)
We get rid of parentheses
-5x^2-14x-8+180=0
We add all the numbers together, and all the variables
-5x^2-14x+172=0
a = -5; b = -14; c = +172;
Δ = b2-4ac
Δ = -142-4·(-5)·172
Δ = 3636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3636}=\sqrt{36*101}=\sqrt{36}*\sqrt{101}=6\sqrt{101}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-6\sqrt{101}}{2*-5}=\frac{14-6\sqrt{101}}{-10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+6\sqrt{101}}{2*-5}=\frac{14+6\sqrt{101}}{-10} $

See similar equations:

| (4=5x) | | -4w+7+6w=5-4w-4 | | (12*2)2=580-x | | 17u=-9+16u | | 20(z+20)+15=6z-4 | | X+3x/2=2x+2 | | 2.5/4=7.5/c | | 5y^2+7y=0 | | x−21=40 | | -30+n=-14 | | x+2=-13x | | x−43=63 | | ((x+4)*(2x))/2=21 | | 2w+4-3=9 | | 20a+50+10=190 | | 2x-17=49 | | 24x/4-8=16x/3 | | 24-(-16x)=520 | | 24–-16p=520 | | 2x^2+16+8=0 | | 5c+9=8 | | 75=(6x-21) | | 2a*3*5a=300 | | 3x+8°+x+50°=180° | | 9x^2-34x+73=0 | | 3(q–7)=21 | | 5^(x^2-3)=72 | | -2.27-9.9n=-15.23-14.7n | | 26=24x-26+2 | | 488=26x-84 | | 18x-(7x-7)=67 | | 1/10(c+3)=-9/10 |

Equations solver categories