If it's not what You are looking for type in the equation solver your own equation and let us solve it.
180=(5x-25)(3x-9)
We move all terms to the left:
180-((5x-25)(3x-9))=0
We multiply parentheses ..
-((+15x^2-45x-75x+225))+180=0
We calculate terms in parentheses: -((+15x^2-45x-75x+225)), so:We get rid of parentheses
(+15x^2-45x-75x+225)
We get rid of parentheses
15x^2-45x-75x+225
We add all the numbers together, and all the variables
15x^2-120x+225
Back to the equation:
-(15x^2-120x+225)
-15x^2+120x-225+180=0
We add all the numbers together, and all the variables
-15x^2+120x-45=0
a = -15; b = 120; c = -45;
Δ = b2-4ac
Δ = 1202-4·(-15)·(-45)
Δ = 11700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11700}=\sqrt{900*13}=\sqrt{900}*\sqrt{13}=30\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(120)-30\sqrt{13}}{2*-15}=\frac{-120-30\sqrt{13}}{-30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(120)+30\sqrt{13}}{2*-15}=\frac{-120+30\sqrt{13}}{-30} $
| -1=7-2g | | 10k+1-2k=7k-17 | | (2x+16)+(3x-11)=180 | | -15+4-5x=-25x+5+1+5x | | 7x+24=3x-4 | | y-5y-50=-12-10 | | 36/w=9 | | 6(5x-6)+7=1 | | x=5/3=-2 | | −38r+41=−22 | | 20+6g+20=-16-g | | 3p-9=⅓(9p-27) | | 2/5(8n-5)=9/5n | | |4x|+8=16 | | 2y-13=-4-3y | | u-4.69=5.4 | | 1.4(-7x-1)+7=-5 | | y+1/4=-3/5 | | 6(1+x)=4+4(3x-7) | | 45h*100=347.50 | | 9.92+16.7u=9.5u-16.1+8.02 | | 2(h+8)-h=h+10 | | 2x+78=50 | | (1)+y(9)=0 | | u+1.57=5.61 | | 3x+6=2x+x+5+1 | | )5x−(x+3)=1/3(9x+18)−5 | | -6x-x=-8x+2x+4 | | 7-4y=4y+23 | | -13=7x-5+6 | | 10x+16x=56 | | 5(2x–6)=7x–3(5-x) |