If it's not what You are looking for type in the equation solver your own equation and let us solve it.
180=(6x+25)(2x+105)
We move all terms to the left:
180-((6x+25)(2x+105))=0
We multiply parentheses ..
-((+12x^2+630x+50x+2625))+180=0
We calculate terms in parentheses: -((+12x^2+630x+50x+2625)), so:We get rid of parentheses
(+12x^2+630x+50x+2625)
We get rid of parentheses
12x^2+630x+50x+2625
We add all the numbers together, and all the variables
12x^2+680x+2625
Back to the equation:
-(12x^2+680x+2625)
-12x^2-680x-2625+180=0
We add all the numbers together, and all the variables
-12x^2-680x-2445=0
a = -12; b = -680; c = -2445;
Δ = b2-4ac
Δ = -6802-4·(-12)·(-2445)
Δ = 345040
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{345040}=\sqrt{16*21565}=\sqrt{16}*\sqrt{21565}=4\sqrt{21565}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-680)-4\sqrt{21565}}{2*-12}=\frac{680-4\sqrt{21565}}{-24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-680)+4\sqrt{21565}}{2*-12}=\frac{680+4\sqrt{21565}}{-24} $
| 2(-4n-7)=-18 | | -9+4x=6x-13 | | 4x=2=3x+4 | | -5(15x1)=2(7x-16)-x | | 120+62+x=180 | | -(9t-8)=-6-9t | | 9g=10g−5 | | V9k=5k-32 | | 9y-6=36 | | 3y+4=-6y-6 | | 105+9.5t=14.75t | | 3(h-9)+2h=h-27+4 | | 3(−5x−8)=8x | | 24p=774 | | -x-3=-2x+3 | | x-13+5x-13=149 | | 8u+10=9u | | 9.5t=14.75t+105 | | 32+2f=1 | | 13y-8y=2(5+15) | | -7/9u=-21 | | 5=5x10 | | 105+14.75t=9.5t | | x^2+4x-159=0 | | -10(n+3)=0.50(24-14n) | | |3m-9|=18 | | 42x+4+43x+1=180 | | 9x+9=11x-2x-9 | | 7/(m+8)=2/m | | (3x-5)=(7x+5) | | 14m=18m+12m | | –2x–16=2 |