180=(6x+7)(4x+9)+(3x+8)

Simple and best practice solution for 180=(6x+7)(4x+9)+(3x+8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180=(6x+7)(4x+9)+(3x+8) equation:



180=(6x+7)(4x+9)+(3x+8)
We move all terms to the left:
180-((6x+7)(4x+9)+(3x+8))=0
We multiply parentheses ..
-((+24x^2+54x+28x+63)+(3x+8))+180=0
We calculate terms in parentheses: -((+24x^2+54x+28x+63)+(3x+8)), so:
(+24x^2+54x+28x+63)+(3x+8)
We get rid of parentheses
24x^2+54x+28x+3x+63+8
We add all the numbers together, and all the variables
24x^2+85x+71
Back to the equation:
-(24x^2+85x+71)
We get rid of parentheses
-24x^2-85x-71+180=0
We add all the numbers together, and all the variables
-24x^2-85x+109=0
a = -24; b = -85; c = +109;
Δ = b2-4ac
Δ = -852-4·(-24)·109
Δ = 17689
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{17689}=133$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-85)-133}{2*-24}=\frac{-48}{-48} =1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-85)+133}{2*-24}=\frac{218}{-48} =-4+13/24 $

See similar equations:

| (4x-6)+12=54 | | 8(x-11)-16=56 | | (m+9)/5=2 | | 5k​−5=6 | | 24+7x=4x+12 | | 5x-3x+9=-8+4x+11 | | 47-2x=-12x-75 | | 1+2n=-1 | | 7j+12=19 | | n2-3=6 | | 7j​ +12=19 | | (5x+5)+(6x-5)=180 | | 8-(x-11)-16=-56 | | 1−6z=–6z+1 | | 9x+5x-165=-9x+85 | | 15x+9+3x=33 | | –2−5t=–10−5t | | 7x-6=x+6(x+6) | | c/8​+13=17 | | 7.5x=6.6 | | 8j+1=8j+6 | | .9-2x=3x+3 | | -6(6x-3)-12+6x=96 | | h/15 +17=21 | | 12-3x-7=20 | | 5x-13=11x-61=7x-29 | | 5x+4-3x=6x-10+4x | | 7x/8-14+4x/8-18=56 | | -2+6x=-9+7x | | −4(x−7)−3x=14(x+5) | | 7=8w | | 14x-12=11x+20 |

Equations solver categories