If it's not what You are looking for type in the equation solver your own equation and let us solve it.
180=(6x-20)(6x-4)
We move all terms to the left:
180-((6x-20)(6x-4))=0
We multiply parentheses ..
-((+36x^2-24x-120x+80))+180=0
We calculate terms in parentheses: -((+36x^2-24x-120x+80)), so:We get rid of parentheses
(+36x^2-24x-120x+80)
We get rid of parentheses
36x^2-24x-120x+80
We add all the numbers together, and all the variables
36x^2-144x+80
Back to the equation:
-(36x^2-144x+80)
-36x^2+144x-80+180=0
We add all the numbers together, and all the variables
-36x^2+144x+100=0
a = -36; b = 144; c = +100;
Δ = b2-4ac
Δ = 1442-4·(-36)·100
Δ = 35136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{35136}=\sqrt{576*61}=\sqrt{576}*\sqrt{61}=24\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(144)-24\sqrt{61}}{2*-36}=\frac{-144-24\sqrt{61}}{-72} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(144)+24\sqrt{61}}{2*-36}=\frac{-144+24\sqrt{61}}{-72} $
| 6d+4=-8d+9 | | 20x^2+5x=4x | | 2/5t-8/3=7 | | 0.5(b+14)=b+7 | | 6y+18+9y=12 | | 8x-x+2=4x+5x-3 | | 5w−w=8 | | 7y−5y=18 | | 5/8j=5/6 | | 3x/2-2=9x/4+13 | | n4+ 15=17 | | 2x+7-1=2x-40 | | 9^x+1+3^1=28.3^x | | 4m+13=24 | | 8x+4=6x-3 | | x/6-3=x+7 | | 9^x+1+3=28.3^x | | 10x+5+4x-7+65=180 | | 4x-500+100=2x | | 4x+16-3x=7+3x | | 3x+4+x-2=180 | | 3x+4+x-2=90 | | X-20°+X-10°=x+20° | | 6−2(4−x)+3x=5x−26−2(4−x)+3x=5x−2 | | 5x+8+3x=26/6x | | -127-13x=-7x+35 | | 18=u/5+16 | | 3(8x+2)+2=8(–3x–2)+8 | | Y=30(1.25)t | | 6x-249=87-2x | | v/2-11=20 | | x-10+x+30=90 |