180=(x+9)(2x+6)

Simple and best practice solution for 180=(x+9)(2x+6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180=(x+9)(2x+6) equation:



180=(x+9)(2x+6)
We move all terms to the left:
180-((x+9)(2x+6))=0
We multiply parentheses ..
-((+2x^2+6x+18x+54))+180=0
We calculate terms in parentheses: -((+2x^2+6x+18x+54)), so:
(+2x^2+6x+18x+54)
We get rid of parentheses
2x^2+6x+18x+54
We add all the numbers together, and all the variables
2x^2+24x+54
Back to the equation:
-(2x^2+24x+54)
We get rid of parentheses
-2x^2-24x-54+180=0
We add all the numbers together, and all the variables
-2x^2-24x+126=0
a = -2; b = -24; c = +126;
Δ = b2-4ac
Δ = -242-4·(-2)·126
Δ = 1584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1584}=\sqrt{144*11}=\sqrt{144}*\sqrt{11}=12\sqrt{11}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-12\sqrt{11}}{2*-2}=\frac{24-12\sqrt{11}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+12\sqrt{11}}{2*-2}=\frac{24+12\sqrt{11}}{-4} $

See similar equations:

| 3h+7=23 | | -3-7x=x-19 | | x*(10-3)=13 | | 80=4x+3x+3 | | x⋅(10+3)=13 | | 33/6+73/6=v | | 20-3(x+5)=2(x-7) | | -3x+4(x+2)=12-x-15 | | x+9x=32 | | 1/2w+7-6w+2=32 | | x/4=(x+1)/4,5 | | x/4=x+1/4,5 | | 0.000591x=18,874,368 | | 2x^2+8x+18=42 | | 16-4x-12=2x | | 16-4x-12=8x | | -195=x/5 | | 20=6x+5-x | | -3t=276 | | 14k+35=14 | | 2(3x-4)-4x=8 | | 150=75+5x | | 5(4x+3)=13x=+64 | | 5(4x+3)13x=+64 | | k=20/24=5/6 | | p=15/14=11/14 | | 3y=14=5y=1 | | f=6/7 | | M=5x+75x+7 | | m=12/5=22/5 | | m4=3/5 | | h=91/3=301/3 |

Equations solver categories