180=(y-18)(y+12)

Simple and best practice solution for 180=(y-18)(y+12) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180=(y-18)(y+12) equation:



180=(y-18)(y+12)
We move all terms to the left:
180-((y-18)(y+12))=0
We multiply parentheses ..
-((+y^2+12y-18y-216))+180=0
We calculate terms in parentheses: -((+y^2+12y-18y-216)), so:
(+y^2+12y-18y-216)
We get rid of parentheses
y^2+12y-18y-216
We add all the numbers together, and all the variables
y^2-6y-216
Back to the equation:
-(y^2-6y-216)
We get rid of parentheses
-y^2+6y+216+180=0
We add all the numbers together, and all the variables
-1y^2+6y+396=0
a = -1; b = 6; c = +396;
Δ = b2-4ac
Δ = 62-4·(-1)·396
Δ = 1620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1620}=\sqrt{324*5}=\sqrt{324}*\sqrt{5}=18\sqrt{5}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-18\sqrt{5}}{2*-1}=\frac{-6-18\sqrt{5}}{-2} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+18\sqrt{5}}{2*-1}=\frac{-6+18\sqrt{5}}{-2} $

See similar equations:

| 42=36–4a | | 18v-12v=6 | | 33=24+y | | 3x−6=4(2−3x)−8x= | | 12(x/12-8/12=2x/3+5/3) | | 3x-3+8x-26=180 | | 7x+7=5x+10=4x+13=6x | | X+4/3=y-3/10 | | 6(x-2)=120* | | 64x=254 | | 5a-3=8 | | 6(x+4)+5x=1/2(x+8) | | 45°+3x=180° | | -5y-20=85 | | 7x=3x=x-18 | | m+5=-8 | | 8-2x=-4+5 | | v+4=88 | | 0.08*w=$0.60 | | (2x-33)=(x+21) | | 4+5n=-16 | | --2.5(2x-5)-3(4.5x=5.2) | | 2x+3=3x-35 | | x2=425 | | 8(-2+a)-3=6a+13 | | (4x-4)=(8x-20) | | 6p=8p+14/7 | | 3(5g-1)-4g=-5(g-4)+105 | | B/6=3s | | 8x+4+3x+17+17x-23=180 | | 5b+3=31 | | 26-2x^2=12x |

Equations solver categories