180=-2x-6-1/4x-3+90

Simple and best practice solution for 180=-2x-6-1/4x-3+90 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180=-2x-6-1/4x-3+90 equation:



180=-2x-6-1/4x-3+90
We move all terms to the left:
180-(-2x-6-1/4x-3+90)=0
Domain of the equation: 4x-3+90)!=0
We move all terms containing x to the left, all other terms to the right
4x+90)!=3
x∈R
We add all the numbers together, and all the variables
-(-2x-1/4x+81)+180=0
We get rid of parentheses
2x+1/4x-81+180=0
We multiply all the terms by the denominator
2x*4x-81*4x+180*4x+1=0
Wy multiply elements
8x^2-324x+720x+1=0
We add all the numbers together, and all the variables
8x^2+396x+1=0
a = 8; b = 396; c = +1;
Δ = b2-4ac
Δ = 3962-4·8·1
Δ = 156784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{156784}=\sqrt{16*9799}=\sqrt{16}*\sqrt{9799}=4\sqrt{9799}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(396)-4\sqrt{9799}}{2*8}=\frac{-396-4\sqrt{9799}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(396)+4\sqrt{9799}}{2*8}=\frac{-396+4\sqrt{9799}}{16} $

See similar equations:

| (2x²+7)/3=13 | | 10+8x16=18 | | 8n=73 | | 10+8x16=0 | | 1/6d=4 | | 10(5x+3)=20 | | 43-2y=14 | | 5•12=4+x•x | | -8(2n-3)=0 | | 11m-4m=-18 | | x+4^2=x(x+10) | | 1-6y=90 | | A-6÷12=a-2÷4 | | X-2y=8(-6,-7) | | 4(4+6+x)=5(5+x+3) | | 1.4^x=2.6^x+5 | | 8(3x-1)=1-0 | | 12x-12=12(x+1) | | 3(4-m)=8m-12 | | Xx.22=32000000 | | 1.75c=16-13.25 | | 4(6x-2)-3(5x-17)=2(4x+2)-2 | | X-7x/8=2/6 | | 2x-(x+8)=5-(x-3) | | 4/3x+2/3=3/2 | | 21=5(u+3)-7u | | 0.3+0.2(x+3)=2.5 | | 1/3(4x-9=8x+12 | | 6x+9-3=3x+30 | | 2/3(4x-9=8x+12 | | 0.3+0.2x+3=2.5 | | t25=325 |

Equations solver categories