180=1/2x+20+2x-10

Simple and best practice solution for 180=1/2x+20+2x-10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180=1/2x+20+2x-10 equation:



180=1/2x+20+2x-10
We move all terms to the left:
180-(1/2x+20+2x-10)=0
Domain of the equation: 2x+20+2x-10)!=0
We move all terms containing x to the left, all other terms to the right
2x+2x-10)!=-20
x∈R
We add all the numbers together, and all the variables
-(2x+1/2x+10)+180=0
We get rid of parentheses
-2x-1/2x-10+180=0
We multiply all the terms by the denominator
-2x*2x-10*2x+180*2x-1=0
Wy multiply elements
-4x^2-20x+360x-1=0
We add all the numbers together, and all the variables
-4x^2+340x-1=0
a = -4; b = 340; c = -1;
Δ = b2-4ac
Δ = 3402-4·(-4)·(-1)
Δ = 115584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{115584}=\sqrt{64*1806}=\sqrt{64}*\sqrt{1806}=8\sqrt{1806}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(340)-8\sqrt{1806}}{2*-4}=\frac{-340-8\sqrt{1806}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(340)+8\sqrt{1806}}{2*-4}=\frac{-340+8\sqrt{1806}}{-8} $

See similar equations:

| 5-x=-12.5+1.5× | | 212=159-v | | y+-2=-14 | | 4x6=4x(4+ | | 7y+14=42 | | x=360-40 | | Y=x+3,-3x+3Y=4 | | 3n^2-7n+880=0 | | (3-x)/5+8=18 | | 5x-4+x=1-9x+22 | | 3n^2-3n+880=0 | | 9x-3=-150 | | 3x(4x^2-64)=0 | | 3x(4x^2-64)=2 | | -43=-12x+17 | | x/2=7/6x+2/3 | | -43=-12x | | -8(4)+y=9 | | 2a+4=8a-5 | | 2(x-3)-4x=6x-2 | | 7a+1=2a=21 | | 2x/3-12=20 | | 3/4x=2x- | | w+24/w=10 | | 2.35+8.34=x | | 4r+6=10r | | -7=6x=x | | 3(x-1)+.5=0.25+4 | | 15u=28+8u | | 7(x)+3=56 | | |x+3|+7=9 | | 5=44=2+r |

Equations solver categories