180=135x2+(45+x)

Simple and best practice solution for 180=135x2+(45+x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180=135x2+(45+x) equation:



180=135x^2+(45+x)
We move all terms to the left:
180-(135x^2+(45+x))=0
We add all the numbers together, and all the variables
-(135x^2+(x+45))+180=0
We calculate terms in parentheses: -(135x^2+(x+45)), so:
135x^2+(x+45)
We get rid of parentheses
135x^2+x+45
Back to the equation:
-(135x^2+x+45)
We get rid of parentheses
-135x^2-x-45+180=0
We add all the numbers together, and all the variables
-135x^2-1x+135=0
a = -135; b = -1; c = +135;
Δ = b2-4ac
Δ = -12-4·(-135)·135
Δ = 72901
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{72901}}{2*-135}=\frac{1-\sqrt{72901}}{-270} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{72901}}{2*-135}=\frac{1+\sqrt{72901}}{-270} $

See similar equations:

| 5=-9+7t | | 95=80+38+x | | 180=128+x | | 110=35+(x+12) | | 5.41=y-5 | | 4/2x-5=64 | | 180=110+35+(x+120 | | (x^2-32x+252)=-(2x-34)-x+20 | | -0.6x=0.4x-19 | | 25x+65=15x+80 | | 7-3n/6+4=5(2n+1) | | 2/3x-2+1/6=5/12 | | 2x-8=-2x+4 | | -6=c(2) | | 180=42+(2x-8) | | 5+7x+3x+1=1 | | -6x+8+3x+7=18 | | 17x+3x-10x-6x-2x=14 | | 90=x+(10+4x) | | 7-(3x+2)=4 | | 16x-x-12x=18 | | 4x+4+6x-20+90=180 | | 4(x-6)-12x=16 | | 0.75x-9=2 | | 180=29+(6x+1) | | 3x+2x+x+4x=20 | | 8x/12-5x/12=3x/12 | | 4x+4+6x-20=90 | | e/4-2=25 | | 18x-x+4x-16x+2x=7 | | 90=84=(x+3) | | 180=123+x |

Equations solver categories