180=2x(3x+20)

Simple and best practice solution for 180=2x(3x+20) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180=2x(3x+20) equation:


Simplifying
180 = 2x(3x + 20)

Reorder the terms:
180 = 2x(20 + 3x)
180 = (20 * 2x + 3x * 2x)
180 = (40x + 6x2)

Solving
180 = 40x + 6x2

Solving for variable 'x'.

Reorder the terms:
180 + -40x + -6x2 = 40x + -40x + 6x2 + -6x2

Combine like terms: 40x + -40x = 0
180 + -40x + -6x2 = 0 + 6x2 + -6x2
180 + -40x + -6x2 = 6x2 + -6x2

Combine like terms: 6x2 + -6x2 = 0
180 + -40x + -6x2 = 0

Factor out the Greatest Common Factor (GCF), '2'.
2(90 + -20x + -3x2) = 0

Ignore the factor 2.

Subproblem 1

Set the factor '(90 + -20x + -3x2)' equal to zero and attempt to solve: Simplifying 90 + -20x + -3x2 = 0 Solving 90 + -20x + -3x2 = 0 Begin completing the square. Divide all terms by -3 the coefficient of the squared term: Divide each side by '-3'. -30 + 6.666666667x + x2 = 0 Move the constant term to the right: Add '30' to each side of the equation. -30 + 6.666666667x + 30 + x2 = 0 + 30 Reorder the terms: -30 + 30 + 6.666666667x + x2 = 0 + 30 Combine like terms: -30 + 30 = 0 0 + 6.666666667x + x2 = 0 + 30 6.666666667x + x2 = 0 + 30 Combine like terms: 0 + 30 = 30 6.666666667x + x2 = 30 The x term is 6.666666667x. Take half its coefficient (3.333333334). Square it (11.11111112) and add it to both sides. Add '11.11111112' to each side of the equation. 6.666666667x + 11.11111112 + x2 = 30 + 11.11111112 Reorder the terms: 11.11111112 + 6.666666667x + x2 = 30 + 11.11111112 Combine like terms: 30 + 11.11111112 = 41.11111112 11.11111112 + 6.666666667x + x2 = 41.11111112 Factor a perfect square on the left side: (x + 3.333333334)(x + 3.333333334) = 41.11111112 Calculate the square root of the right side: 6.411794688 Break this problem into two subproblems by setting (x + 3.333333334) equal to 6.411794688 and -6.411794688.

Subproblem 1

x + 3.333333334 = 6.411794688 Simplifying x + 3.333333334 = 6.411794688 Reorder the terms: 3.333333334 + x = 6.411794688 Solving 3.333333334 + x = 6.411794688 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-3.333333334' to each side of the equation. 3.333333334 + -3.333333334 + x = 6.411794688 + -3.333333334 Combine like terms: 3.333333334 + -3.333333334 = 0.000000000 0.000000000 + x = 6.411794688 + -3.333333334 x = 6.411794688 + -3.333333334 Combine like terms: 6.411794688 + -3.333333334 = 3.078461354 x = 3.078461354 Simplifying x = 3.078461354

Subproblem 2

x + 3.333333334 = -6.411794688 Simplifying x + 3.333333334 = -6.411794688 Reorder the terms: 3.333333334 + x = -6.411794688 Solving 3.333333334 + x = -6.411794688 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-3.333333334' to each side of the equation. 3.333333334 + -3.333333334 + x = -6.411794688 + -3.333333334 Combine like terms: 3.333333334 + -3.333333334 = 0.000000000 0.000000000 + x = -6.411794688 + -3.333333334 x = -6.411794688 + -3.333333334 Combine like terms: -6.411794688 + -3.333333334 = -9.745128022 x = -9.745128022 Simplifying x = -9.745128022

Solution

The solution to the problem is based on the solutions from the subproblems. x = {3.078461354, -9.745128022}

Solution

x = {3.078461354, -9.745128022}

See similar equations:

| 14x+7y+21=0 | | -83+9x=25 | | 3(7x-4)= | | 7x+12=-5x-16 | | 8*2-5*3(-21)= | | 2(x+5)=2(x+11) | | 5x/4=-16 | | 8x-24=6x | | -48h^8/-8h^2 | | (x-10)=2x | | 5x+15=-3x-16 | | 83-5y=3 | | 8-6x=4x+49 | | x/2+2=15 | | 14x-6x=72 | | log(5x)=log(x-1)+1 | | 4(x+4)=4(x+15) | | -(x+4)=-2(3x+16) | | 6x-y-5=0 | | 6(x+5)=6(x+11) | | 45=-5x | | 4(4x+3)=15x+10 | | 4x+2+3x=5x+14+x | | a^3+b^3+c^3=21 | | 9t=-10t-3 | | -5(2x-9)=2(x-8)11 | | 20x^3+8x^2+12x= | | 4-18=z/-9 | | 12x-8=11x | | 2x^2+8x+6=8 | | 9w-8w+2=-4+2w | | 3/4c=72 |

Equations solver categories