180=3x+17+1/2x-5

Simple and best practice solution for 180=3x+17+1/2x-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180=3x+17+1/2x-5 equation:



180=3x+17+1/2x-5
We move all terms to the left:
180-(3x+17+1/2x-5)=0
Domain of the equation: 2x-5)!=0
x∈R
We add all the numbers together, and all the variables
-(3x+1/2x+12)+180=0
We get rid of parentheses
-3x-1/2x-12+180=0
We multiply all the terms by the denominator
-3x*2x-12*2x+180*2x-1=0
Wy multiply elements
-6x^2-24x+360x-1=0
We add all the numbers together, and all the variables
-6x^2+336x-1=0
a = -6; b = 336; c = -1;
Δ = b2-4ac
Δ = 3362-4·(-6)·(-1)
Δ = 112872
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{112872}=\sqrt{4*28218}=\sqrt{4}*\sqrt{28218}=2\sqrt{28218}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(336)-2\sqrt{28218}}{2*-6}=\frac{-336-2\sqrt{28218}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(336)+2\sqrt{28218}}{2*-6}=\frac{-336+2\sqrt{28218}}{-12} $

See similar equations:

| 12-4x=-7x-3(x-2) | | -85=-5(1-2m) | | 0,7b=-14 | | -4+4(3x-7)=-104 | | m+2-5(m+1)=49-2(m-2) | | 2(2-8n)=-108 | | 1y+8=14 | | (2x-10)=(5x+30) | | (x)^.5+(x+15)^.5=15 | | 2m+2m-5+8=11 | | 1n-9=-2 | | 3r+4+5=-9 | | 7b+2-7=-12 | | x-(0,15x)=32,99 | | 180-7x-43=180-3x+5-x+3 | | 6x-4=10x+8-4(x+1) | | 6=-2j | | 137-7x=188-4x | | -19=s-22 | | 9y+3=57y= | | x-20.3=-6.9 | | 6(x+9)-(5x-1)=1 | | x(x+4)+x(x+2)=2x²+12 | | -2.5m=-20 | | 18.4=x-8.2 | | 45+36u=66+17 | | -3=-q/3 | | x+3/5=51/10 | | -17(9x-23)=-8x+53 | | 8=4+p/2 | | 6=1+p/5 | | 1.4x+1.8=-1.2+2.9x |

Equations solver categories