If it's not what You are looking for type in the equation solver your own equation and let us solve it.
180=x(4x-20)
We move all terms to the left:
180-(x(4x-20))=0
We calculate terms in parentheses: -(x(4x-20)), so:We get rid of parentheses
x(4x-20)
We multiply parentheses
4x^2-20x
Back to the equation:
-(4x^2-20x)
-4x^2+20x+180=0
a = -4; b = 20; c = +180;
Δ = b2-4ac
Δ = 202-4·(-4)·180
Δ = 3280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3280}=\sqrt{16*205}=\sqrt{16}*\sqrt{205}=4\sqrt{205}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{205}}{2*-4}=\frac{-20-4\sqrt{205}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{205}}{2*-4}=\frac{-20+4\sqrt{205}}{-8} $
| 113+u=180 | | 60+90=x+180 | | -9z+6-4z=-16 | | 3+a=13 | | 142+u=180 | | 53+31=x+180 | | -4(1+7x)=-34 | | 0.74+0.14t=2.79t-0.85 | | (x+12∘)+100∘+x∘=180∘ | | 8h+4h=22 | | 8h=4h=22 | | 12=-18+6y | | 142+v=108 | | X2+8x=5 | | -9(4b+3)=32-7b | | 1/6(12-18x)+5=2 | | -3(7k-4)=29 | | 71+v=180 | | 35=4(3v-6) | | -x-6=4-3x | | -18=3c-7c | | -4s-8+9=20 | | 68+23+x=180 | | 5(x+5)+6=-14 | | 107+v=180 | | 36+4x=90 | | 4v^2+5v-75=0 | | 9y+3+6y=-31 | | 4(x+2)-3(x-5)=29 | | 18-7x=-20,5 | | 32+v=180 | | (2x+10)(x+6)=258+2x |