180n-540=2880/n

Simple and best practice solution for 180n-540=2880/n equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180n-540=2880/n equation:



180n-540=2880/n
We move all terms to the left:
180n-540-(2880/n)=0
Domain of the equation: n)!=0
n!=0/1
n!=0
n∈R
We add all the numbers together, and all the variables
180n-(+2880/n)-540=0
We get rid of parentheses
180n-2880/n-540=0
We multiply all the terms by the denominator
180n*n-540*n-2880=0
We add all the numbers together, and all the variables
-540n+180n*n-2880=0
Wy multiply elements
180n^2-540n-2880=0
a = 180; b = -540; c = -2880;
Δ = b2-4ac
Δ = -5402-4·180·(-2880)
Δ = 2365200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2365200}=\sqrt{32400*73}=\sqrt{32400}*\sqrt{73}=180\sqrt{73}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-540)-180\sqrt{73}}{2*180}=\frac{540-180\sqrt{73}}{360} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-540)+180\sqrt{73}}{2*180}=\frac{540+180\sqrt{73}}{360} $

See similar equations:

| x*4+85=x*8-11 | | 190=h-100 | | 6x^2+14x+14=0 | | -50-9n=6+2n | | (n-2)180+360=900 | | -4-2v=8v+29 | | 9z+10=2z-32 | | 1=8-4n | | 12(x+8)-10(x+11)=13(x+8)-12(x+11) | | 51=r-34 | | (x+5)²+(x+5)(x-1)=0 | | 4=f-18 | | X+21=9x-11 | | 6y-37=11 | | 4y+5=9y-4 | | 5d+8=3d+22 | | 8x+55=15x+6 | | 4n+6=54-2n | | 45x-23x+15+8=17x-9+3x-x+74 | | 6m+3=43 | | 45x-23x+15+8=17x–9+3x-x+74 | | 1.6/x=0.02 | | 2r=74 | | 45x-(23x–15)+8=(17x–9)+3x-(x–74) | | 28-5v=3v+4 | | 98=7m | | 99=y+3 | | 5x+3=3x–5  | | 44=q-24 | | 5+6x=4x-10 | | 4z+5=5z-12 | | 5w+4=2w+7 |

Equations solver categories