1813500=2L+150x2

Simple and best practice solution for 1813500=2L+150x2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1813500=2L+150x2 equation:



1813500=2+150L^2
We move all terms to the left:
1813500-(2+150L^2)=0
We get rid of parentheses
-150L^2-2+1813500=0
We add all the numbers together, and all the variables
-150L^2+1813498=0
a = -150; b = 0; c = +1813498;
Δ = b2-4ac
Δ = 02-4·(-150)·1813498
Δ = 1088098800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$L_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$L_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1088098800}=\sqrt{400*2720247}=\sqrt{400}*\sqrt{2720247}=20\sqrt{2720247}$
$L_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{2720247}}{2*-150}=\frac{0-20\sqrt{2720247}}{-300} =-\frac{20\sqrt{2720247}}{-300} =-\frac{\sqrt{2720247}}{-15} $
$L_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{2720247}}{2*-150}=\frac{0+20\sqrt{2720247}}{-300} =\frac{20\sqrt{2720247}}{-300} =\frac{\sqrt{2720247}}{-15} $

See similar equations:

| 1/7(14r+28=) | | 9y^2-30y-24=0 | | 2/5*x-7=41 | | -2u-8=50-1 | | 28.50+.75=36.75x | | 2x+3-5x=-2(x+1) | | -12+x/11=3 | | 8(8−k)=−2(k−5) | | 2/3+1/6q=1/3 | | 2x=x+14=x-38 | | 8(x+2)+4=2x+6(3+x) | | 2^x+2=7^3x+1 | | 625-200x+12x^2=0 | | 0=1-8n-1 | | 2/3b+5=20 | | 3x(4x-3)+5(4x-3)=0 | | -1/p-8=14 | | -4=4+x/2 | | 13=1-8x+2x | | p+1/10=2 | | 2(4z-1)=3(z+32 | | -1{p-8=14 | | -12+4m=-2-6(-4+5m) | | -1/2(2/3*x-3/4)-7/2*x=-83/24 | | 4/5x+9=13 | | -5x/8=-6/7 | | b+2b+(2b-12)=128 | | 3/4-1/2t=4 | | -5+4.9x^2=14.74x | | 5x^2+10=-5 | | -1{7-4x}=9 | | -4=5(p-2 |

Equations solver categories