183=8s+3/2s+12

Simple and best practice solution for 183=8s+3/2s+12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 183=8s+3/2s+12 equation:



183=8s+3/2s+12
We move all terms to the left:
183-(8s+3/2s+12)=0
Domain of the equation: 2s+12)!=0
s∈R
We get rid of parentheses
-8s-3/2s-12+183=0
We multiply all the terms by the denominator
-8s*2s-12*2s+183*2s-3=0
Wy multiply elements
-16s^2-24s+366s-3=0
We add all the numbers together, and all the variables
-16s^2+342s-3=0
a = -16; b = 342; c = -3;
Δ = b2-4ac
Δ = 3422-4·(-16)·(-3)
Δ = 116772
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{116772}=\sqrt{4*29193}=\sqrt{4}*\sqrt{29193}=2\sqrt{29193}$
$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(342)-2\sqrt{29193}}{2*-16}=\frac{-342-2\sqrt{29193}}{-32} $
$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(342)+2\sqrt{29193}}{2*-16}=\frac{-342+2\sqrt{29193}}{-32} $

See similar equations:

| s2+39=39 | | 15=40a | | x*2+x/4=90 | | k-434=814 | | u2+97=9 | | (-8/6)/(6x)=(10/6)/(2x+6/8) | | 22-3x=2(×+6) | | 11x-1=12x+13+24 | | -2x-11=6 | | -2=x-116 | | 12x=1/16 | | 8x+4x+3+7=3x+3+8x | | 5^{2x+3}=18 | | (3x-33)=90 | | 17x+8=12x-4+42 | | 6=d+2/4 | | 7x+x^2=29 | | 4x+8/3=3/16 | | 9d/4=-9 | | x/​6+​2.33333-​3.5*​1.2=23/5 | | 9/4d=-9 | | |3.2-1.054x|=2 | | 4/x-5=7x | | 3=d=9/4 | | 4+6(x-1)=1-6(x-8) | | 3m-2=4m+4-m | | 8t^2+26t+15=0 | | (x-30)+(2x-120)+(1/2+15)=180 | | 8t^2+26t+158t=0 | | 8xx=7 | | 6/187x17/2=x | | 2y×(y×3)=2 |

Equations solver categories