18=399+(5p)(20+p)

Simple and best practice solution for 18=399+(5p)(20+p) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 18=399+(5p)(20+p) equation:



18=399+(5p)(20+p)
We move all terms to the left:
18-(399+(5p)(20+p))=0
We add all the numbers together, and all the variables
-(399+5p(p+20))+18=0
We calculate terms in parentheses: -(399+5p(p+20)), so:
399+5p(p+20)
determiningTheFunctionDomain 5p(p+20)+399
We multiply parentheses
5p^2+100p+399
Back to the equation:
-(5p^2+100p+399)
We get rid of parentheses
-5p^2-100p-399+18=0
We add all the numbers together, and all the variables
-5p^2-100p-381=0
a = -5; b = -100; c = -381;
Δ = b2-4ac
Δ = -1002-4·(-5)·(-381)
Δ = 2380
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2380}=\sqrt{4*595}=\sqrt{4}*\sqrt{595}=2\sqrt{595}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-2\sqrt{595}}{2*-5}=\frac{100-2\sqrt{595}}{-10} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+2\sqrt{595}}{2*-5}=\frac{100+2\sqrt{595}}{-10} $

See similar equations:

| 5x+18=3x+38 | | 14=b+9;b=5 | | 7-x/5=13x | | 4y-3+2y=33-3y | | 3x=6x=3 | | 3x=6;x=3 | | 7x+1=7x-1;x=2 | | (5x+1)+(7x-65)=180 | | 5x+1=7x-65 | | 6x-56=4x-4 | | -1+2i=0 | | 3x²-20x-8=0 | | 2x+0,5x-2=-1/4x+2-1/4x | | x=-6+1/1.5 | | 2x-0.50x-5+15=0 | | 5x²+41=86 | | x=-2+0.5/4.75 | | 15000×x^2=15540 | | 3(-5x+10=30 | | w²-12w+w²=0 | | 9-0.25f=f | | 5x+20=0.25x+10 | | 2x+15=0.50x+5 | | 3(2^x+3)-5(2^x+2)-156=0 | | -1=x2 | | 4x^2+35x-144=0 | | 6x-2-1=-15 | | 12.5x=7.8 | | 3x+3+4=2x-4+20 | | 7=1+8k-2k | | n-7n=-18 | | 256=-2^n-1 |

Equations solver categories