If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18n*18n-50=0
Wy multiply elements
324n^2-50=0
a = 324; b = 0; c = -50;
Δ = b2-4ac
Δ = 02-4·324·(-50)
Δ = 64800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{64800}=\sqrt{32400*2}=\sqrt{32400}*\sqrt{2}=180\sqrt{2}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-180\sqrt{2}}{2*324}=\frac{0-180\sqrt{2}}{648} =-\frac{180\sqrt{2}}{648} =-\frac{5\sqrt{2}}{18} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+180\sqrt{2}}{2*324}=\frac{0+180\sqrt{2}}{648} =\frac{180\sqrt{2}}{648} =\frac{5\sqrt{2}}{18} $
| 8d+5=9d-3 | | -3s-8s=18 | | (8g+1)(g-3)=0 | | -10f=6-7f | | -9y+25=3(6-4y) | | 22+2a=37+a+6 | | 8u(u+4)=0 | | Y=7.75x+3/4 | | 8-(2x+3)+x=7.5 | | -3b+10=-7b-10 | | 3(2x=5)=51 | | -r-6=-3r | | 2(4x-5)=40-2x | | (.35x+.15x)+x=1224.60 | | -9+8z=7z | | 36=4-5y-12 | | 4m+4m=18-90 | | -(4x-3)-(4x-6)+10=-6(x-1)-(6x+6)+3 | | x+24/5=16x/4 | | 7x+21=6x-3 | | w(8w+7)=0 | | 7x-11=5×+25 | | -j+10=-2j | | x=6+(0,33x) | | x/5-10=26 | | 5r-15=20 | | 10+4r=3r | | 6n-3=8n+15 | | 26x+14=25x+10 | | 16-3p=-3p-4p | | 5(x-1)+3(x+2)=73 | | -3(3x-1)+-5=6 |