If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x-117+4x^2=0
a = 4; b = 18; c = -117;
Δ = b2-4ac
Δ = 182-4·4·(-117)
Δ = 2196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2196}=\sqrt{36*61}=\sqrt{36}*\sqrt{61}=6\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-6\sqrt{61}}{2*4}=\frac{-18-6\sqrt{61}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+6\sqrt{61}}{2*4}=\frac{-18+6\sqrt{61}}{8} $
| −x2+3x+18=0 | | 6/x+3=24 | | 4x2+x-5=0 | | (4x+10)+(8x+12)+(6x+18)+(12x+8)+(16x+32)=540 | | (3x−5)+(7x+25)+(15x+8)+(30x+2)=360 | | 2x+4+5x-6=90 | | 20−((81/2*2)×14)+3=p | | (2x+9)+(6x+8)+(4x+12)+(7x+46)=360 | | (25x+3)+(4x−7)+(x+124)=180 | | 56v+28=3v-27 | | n/4+8=18 | | (4^2x-3)=64 | | (9x+17)+(8x+35)+(19x+20)=180 | | (6x+12)+(4x+9)+(13x+44)=180 | | 3x−4=1 | | (x+55)/9=-12 | | −27=8+5u | | p-70/5=3 | | (2x+4)+(3x+8)+(5x+18)=180 | | 15x+x+4x=180 | | 8=v2+6 | | 8=v2+ 6 | | -z/5+2=-10 | | 84o-6.8=14.2+6.3o | | 5(x+20)=9x+20 | | 4(x)=-2x^2+5x-3 | | x/2+12=41 | | /98m−16m=−4−113. | | 12-5m=14 | | 4^1+2x=16^-2+x/2x | | 3.8+10m=7.96 | | 15x-8=9x+40 |