If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2+83x+9=0
a = 18; b = 83; c = +9;
Δ = b2-4ac
Δ = 832-4·18·9
Δ = 6241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6241}=79$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(83)-79}{2*18}=\frac{-162}{36} =-4+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(83)+79}{2*18}=\frac{-4}{36} =-1/9 $
| 34/7+p=21/4 | | 93=9x+3 | | -2x-210=7x-15 | | -8t+20+5t=8t-7 | | 46/7+p=51/4 | | X-2/5x=60 | | 40=17x+23 | | 46+50x=18x-498 | | 7/(x-9)=21/36 | | T=3+9x | | 11a-5(a+1)=3(a-2) | | 180=12x+120 | | 4b+3=3b-5 | | 28=6u-12+2u | | 4z/−16=-8 | | 1/4x+2=-8 | | u+5/6=8/3 | | 2w^2+11w-42=0 | | p-84/10=1 | | 1(4)/(5)x=-18 | | 6p-1/2(2p-3)=3(1-p)-7/6(p+2) | | h/6+24=29 | | 6(j-77)=84 | | 6x-1+7=36 | | 3x=+48 | | k-21/2=1 | | 17=3u+5 | | 3x+1/2=-4 | | (6)+9x=10x | | -3x=1-1/2 | | 6x-4=2x=8 | | 0.5x+0.4=2.4 |