If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2+8x-18=0
a = 18; b = 8; c = -18;
Δ = b2-4ac
Δ = 82-4·18·(-18)
Δ = 1360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1360}=\sqrt{16*85}=\sqrt{16}*\sqrt{85}=4\sqrt{85}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{85}}{2*18}=\frac{-8-4\sqrt{85}}{36} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{85}}{2*18}=\frac{-8+4\sqrt{85}}{36} $
| w3=0.7 | | w/3=0.7 | | t/2=17 | | 18x28x−18=0 | | t2=17 | | 5d-7-d=+4 | | 18x2+8x−18=0 | | 16s=18 | | 26=t+17 | | -x2+13x=1 | | w/4-17=15 | | -81-3x=-9x+21 | | 1.20(n+21/2)=4.50 | | b−16=612 | | -4x-89=-8x+27 | | 10+a+2+13=1+7 | | 5m-6=12 | | 34w=45 | | -n/2=12 | | x-140=80-9x | | 7.4p=28.86 | | 1.20(n+5/2)=4.50 | | X+2+90=(3x-8) | | 23y-6=6 | | 1.20(n-5/2)=4.50 | | 2/3y-6=6 | | 2h(h)+5h+3=0 | | -5x-98=32-10x | | u/7+8.1=-3.1 | | 60-3-40=4x | | 2h*2+5h+3=0 | | (X+2)90=(3x-8) |