If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2+x=5
We move all terms to the left:
18x^2+x-(5)=0
a = 18; b = 1; c = -5;
Δ = b2-4ac
Δ = 12-4·18·(-5)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-19}{2*18}=\frac{-20}{36} =-5/9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+19}{2*18}=\frac{18}{36} =1/2 $
| -24=(x=5) | | 65+2a=5+7Y | | 4(2x−3)+3x=32 | | (2x-15)-121=180 | | 3b-3+3b-63=180 | | -2(-4x+3)-2=1+2x | | j+2/3=3/2 | | 2x+11=5x+(-25) | | (3x-6/4)=-6 | | d+7.6=16 | | (3/4)(12d-4)=33 | | -4p-17=43 | | s+16=30 | | s2–23s=0 | | 18-4x=x | | 4s2−36s+81=0 | | x^2-3.5x+0.5=0 | | -x-3x=48 | | 112=-8y | | m/3-9=-14 | | 112=8y | | 13y−3=3y+57 | | 5.4x-5=4.4x+4 | | 5x^+9x-4=0 | | 14x+21=13x+11 | | 3(2x+7)=1x+15+3x | | 7x+9=6x-6 | | 6.2(4x-6)=5(1x-2.6) | | m/3=5/8 | | 4x-5+1=162 | | 6(x−5)−3x=x+10 | | 2(3x+5)=12x+4-6x+2 |