If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2-18=149
We move all terms to the left:
18x^2-18-(149)=0
We add all the numbers together, and all the variables
18x^2-167=0
a = 18; b = 0; c = -167;
Δ = b2-4ac
Δ = 02-4·18·(-167)
Δ = 12024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12024}=\sqrt{36*334}=\sqrt{36}*\sqrt{334}=6\sqrt{334}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{334}}{2*18}=\frac{0-6\sqrt{334}}{36} =-\frac{6\sqrt{334}}{36} =-\frac{\sqrt{334}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{334}}{2*18}=\frac{0+6\sqrt{334}}{36} =\frac{6\sqrt{334}}{36} =\frac{\sqrt{334}}{6} $
| 10=10x-5x | | 5=9x-8x | | 6=9b-7b | | 6=9x+7x | | 4=6o-2o | | (40x)+(1.5x*40)+(2x*39)=13350 | | 13=10g+3g | | 13=10g | | (40x)+((1.5x)40)+((2x)39)=13350 | | 8=8p+4p | | 18n=50+10n | | 2x+2(x+3)=20 | | 1.7(15r-9.9)=46.7 | | 10+2y=16- | | 1/3x+1/4x=10 | | 5x2-50=10 | | 4x+8=4(-2+5) | | 5x-3(x-3)=-5+4x+10 | | 4x+8=4(-2+8) | | x/10+2=32 | | 5x2-50=0 | | x+1.5x+2x=17000 | | F(x+3)=2x+5 | | ×/3+y/2=4/3 | | −4.5=−0.5*(x−7.1) | | y’-4-y^2=0 | | 7^2+a^2=10^2 | | F(x)=x-14 | | 10+15=-5(6x-5) | | 3x+13=6x+28 | | (2(z-8))/(12)=(3)/(2) | | C+7d=13 |