If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2-36x=0
a = 18; b = -36; c = 0;
Δ = b2-4ac
Δ = -362-4·18·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-36}{2*18}=\frac{0}{36} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+36}{2*18}=\frac{72}{36} =2 $
| 40=8(a+6) | | x/9.7=8.61 | | 40=8(a+) | | .8n+11=23 | | /2x+14=28 | | -x/2=1-3 | | -9p=5-4p | | 3x-2x+x-5x+6=x-2 | | -12-3v=-3(1v+4) | | T(8)=136-8n | | 15+x+2=100 | | 50=4x+3(3x-5) | | (4x)°+42°=90° | | 2g+7=g-7 | | 4(-x+2)=-3x-10+2x | | -s=-7+6s | | 2−2t=43 t+13 | | -5/3=6/5u-3/2 | | 1/2(8x-4)=6 | | 13=16-y | | 1.2x=54 | | 4(5-2h)+12=72 | | 9−8j=–7j | | 2(2x-3)=2(x+4) | | 2=19-n | | -3c-4=-12 | | x-49=23 | | 7x+1-5x+2=8x+5-x+2 | | y=-8+1/3 | | -54+(-2x)=-44 | | 2=19-q | | y=-9+2/3 |