19+z=5/9z+3

Simple and best practice solution for 19+z=5/9z+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 19+z=5/9z+3 equation:



19+z=5/9z+3
We move all terms to the left:
19+z-(5/9z+3)=0
Domain of the equation: 9z+3)!=0
z∈R
We get rid of parentheses
z-5/9z-3+19=0
We multiply all the terms by the denominator
z*9z-3*9z+19*9z-5=0
Wy multiply elements
9z^2-27z+171z-5=0
We add all the numbers together, and all the variables
9z^2+144z-5=0
a = 9; b = 144; c = -5;
Δ = b2-4ac
Δ = 1442-4·9·(-5)
Δ = 20916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20916}=\sqrt{36*581}=\sqrt{36}*\sqrt{581}=6\sqrt{581}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(144)-6\sqrt{581}}{2*9}=\frac{-144-6\sqrt{581}}{18} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(144)+6\sqrt{581}}{2*9}=\frac{-144+6\sqrt{581}}{18} $

See similar equations:

| 50a=100 | | 8m+-8m–-9m+10m+-7m=-20 | | 24b=-48 | | -9y-1=8y-4= | | 17x-9(x+4)=3x-12x | | 4n-11/4=-91/4 | | 8(2x-6)-2=8(x-5)+6 | | (-3x+5)/(x-6)=-2/3 | | 5(x-2)+3(1/3x+1)=2(3x-4)+2 | | (5x-40)=(2x+2) | | 63=3*5x+3 | | 1/2(8x-16)=2/3(6x+12) | | 5^2-3x=7x | | d^2-13=0 | | 6-(4y-9)=7-5y | | 72y=8 | | 8+x-5=2(3x-8) | | −34y=−6−34y=−6 | | 2u-1/3-5u+9/6=-2 | | -2=x/5 | | 3(5x+8)=-44+8 | | 6(x-9)=5x-7 | | 2x+3(9x+12)=130 | | 3s-10=250 | | |x+12|=18 | | 1-7×b=20 | | X-6(2-x)=-48 | | (3x-1)=47 | | 7x+9-3x=1+3x+5 | | (7u-9)/5=2u | | 3x+(-2)=-14 | | -24+6y=42 |

Equations solver categories